
2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)

978-1-4799-6230-3/14/$31.00 ©2014 IEEE

Photovoltaic panel emulator in FPGA technology using ANFIS approach

F. Gómez-Castañeda1, G.M. Tornez-Xavier1, L.M. Flores-Nava1,

O. Arellano-Cárdenas1, J.A. Moreno-Cadenas1
1Department of Electrical Engineering, CINVESTAV-IPN, Mexico D.F., Mexico

Phone (52) 55 5747 3800 Ext. 6261

E-mail: {fgomez, gtornez, lmflores, arellano, jmoreno} @cinvestav.mx

Abstract — In this manuscript we present the implementation

in FPGA of ANFIS system (Adaptive Network-based Fuzzy

Inference Systems) for a two-input architecture with three

membership functions per input and nine fuzzy rules, used to set

up a photovoltaic panel emulator. The starting point is the

photovoltaic panel electric analog model simulated with ELDO, a

tool of Mentor Graphics Suite, having as inputs irradiation and

temperature from a meteorological data base so we can obtain the

short-circuit current (ISC) and open circuit voltage (VOC) of the

panel. With this information, ANFIS was trained within Matlab

environment to approximate the photovoltaic panel response. The

training was carried out for both, current and voltage,

independently, and once achieved minimum error parameters,

they were downloaded into the FPGA implemented architecture

in order to assess its performance.

Keywords — Photovoltaic panel, ANFIS, neurofuzzy systems,

VHDL, FPGA.

I. INTRODUCTION

The use of alternative energy sources has an increasing role
to substitute traditional sources; particularly, solar energy results
very attractive since it presents an ample availability all around
the world and is a clean energy source. Hence, the need of
working with photovoltaic systems is increasing day after day.
In this work we focus solely in developing the photovoltaic
panel model, which is where solar energy is converted to
electrical energy. Attaining the analytical model of a
photovoltaic panel becomes a complex task, because there are
many environmental factors intervening; so, in order to emulate
its behavior, we can draw upon artificial neural networks (ANN)
as we reported in a previous work [1]. However, with ANNs we
cannot get an easily interpretable system and, if there are
changes in the data base, the whole system must be trained from
scratch and there is no possibility of using prior knowledge.

A neurofuzzy system combines the advantages of fuzzy

systems, which deal with the knowledge that can be explained

and understood, and ANN that deal with implicit knowledge

that can be acquired by means of learning. The learning of a

neural network provides a good methodology of adjusting the

expert's knowledge (prior knowledge), defined by the fuzzy

system, by generating fuzzy rules and adding membership

functions automatically, or modifying those that are already

defined. Alternatively, the fuzzy logic enhances the capacity of

generalization of a neural network, giving it a more reliable

output when is required an extrapolation that goes beyond the

limits of the training data.

Many developments of neurofuzzy systems have been made
in software, taking advantage of the modern computers
capacities; however, an important characteristic of these systems
is its parallel architecture, which cannot be built precisely with
a system that executes programs in a sequential form (software).
For this reason, arises the need of using circuits that truly carry
out parallel processing, obtaining in this way a better
performance, and as the system does not depend on a computer,
it might be implemented as a portable system and consequently
with less power consumption. This parallelism can be
accomplished with devices as FPGAs (Field Programmable
Gate Arrays).

The model of the photovoltaic panel to be implemented in
the FPGA was approximated with ANFIS and consists of two
stages: software implementation, which offers great flexibility
for training and simulation of the architecture for general
purpose applications, and hardware implementation, that allows
to perform real time simulations. The software stage was carried
out in Matlab, for training and simulation of the system. In the
second stage, timed simulation and FPGA implementation were
done by using the Xilinx Suite. The FPGA chip used is one of
Spartan 6 family.

II. ANFIS ARCHITECTURE

ANFIS is the straight result of a computation methodology
that arose in the 90’s called Soft Computing, which incorporates
the ability of human mind for reasoning and learning in an
ambiguous and imprecise environment. ANFIS is a kind of
adaptive network that, functionally, is equivalent to a fuzzy
inference system [2]. This architecture allows representing
directly Sugeno and Tsukamoto fuzzy models. Fig.1 shows the
layers that constitute it, in this case for a two-input architecture,
with three membership functions for each input and nine fuzzy
rules. The five layers that integrate it are the following: Layer 1,
membership functions (bell-shape functions with three
parameters ai, bi and ci); layer 2, T-norm operator (MIN
operator); layer 3, normalization; layer 4, first order polynomials
multiplication (with three parameters pj, qj and rj); layer 5, total
sum, where i=total number of membership functions and j=total
number of fuzzy rules.

In a fuzzy inference system (FIS), the antecedent of a rule
defines a local fuzzy region while the consequent describes the
behavior inside that region by means of several components. For
a Sugeno model, such components can be a constant (order ‘0’
model) or a lineal equation (1st order model). For this last case,
a fuzzy rule is described as follows:

If x is A1 and y is B1, then z1 = p1 x + q1 y + r1

where A1 and B1 are linguistic labels (such as “small”, “tall” or

“new”).

ANFIS architecture is shown in Fig. 1 The layers drawn with

square nodes are adaptable, that is, their values are adjusted

when the system is trained; layers drawn with circle nodes

remain invariable before, during and after the training. The

training is executed in two steps: one forward pass, maintaining

the premise parameter (membership functions) fixed, applying

the least-squares estimator and having as signals those generated

by the node outputs. The other step is a backward pass, where

the error signals propagate backward and the premise

parameters are updated by gradient descent while holding the

consequent parameters (output polynomials) fixed.

Fig. 1 ANFIS system with two inputs and nine rules.

III. SOFTWARE IMPLEMENTATION

The data set used for training ANFIS should be defined such
that it is contained within the two-dimensional fuzzy space
established as the universe of discourse for the two input
variables of the system (X and Y). For our application, the
training data are generated from the known meteorological data
base, first performing a normalization so both inputs (radiation
and temperature) and output targets (voltage and current) be
within the fuzzy space.

Training for current and voltage were done separately to get
the sets of premise and consequent parameters to be programed
in the FPGA. The total number of vectors in the data base is
1097 that stands for three years of monitoring in the zone, and
they were divided as follows: 70% for training (967), 15% for
testing (165) and 15% for checking (165).

Fig. 2 shows all the input/output vectors set without
normalization, as they were generated from the electric analog
model.

Fig. 2 Inputs (radiation and temperature) and output targets

(voltage and current)

Fig. 3 shows Matlab’s ANFIS editor displaying the test

vectors for current after 150 epochs of training.

Fig. 3 ANFIS user interface.

After 150 epochs of training, the premise parameters
obtained for current are the following:

Input 1:
 Bell 1: a = 0.3205, b = 1.992, c = 0.0255
 Bell 2: a = 0.2857, b = 2.007, c = 0.511
 Bell 3: a = 0.1046, b = 2.008, c = 1.058
Input 2:
 Bell 1: a = 0.3245, b = 2.007, c = 0.1798
 Bell 2: a = 0.1953, b = 2.009, c = 0.4012
 Bell 3: a = 0.184, b = 2.01, c = 0.992
Polynomials [pj, qj, rj]:

1) [1.006 -0.005712 0.0007382]
2) [0.9895 0.007186 -0.0002577]
3) [1.009 0.008716 -0.007701]
4) [0.995 0.005629 -0.001885]
5) [1.009 -0.0004158 -0.005918]
6) [1.005 0.01646 -0.0175]
7) [0.9346 -0.01131 0.05408]
8) [0.9967 0.01971 0.003931]
9) [1.003 0.09357 -0.06962]

x

y

A1

A2

A3

B1

B2

B3

1

2

3

4

5

6

7

8

9

x

y

f

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

The correspondent membership functions for current are
shown in Fig. 4.

Fig. 4 Membership functions for current.

IV. HARDWARE IMPLEMENTATION

Reviewing the state of the art with regards to ANFIS
implementation in hardware, we reviewed three papers [3, 4, 5]
where they perform serial processing and, in this way, they
consume less logical resources of the FPGA. In contrast, we
implement parallel processing in order to achieve the smallest
response time of the system.

In order to test ANFIS architecture, we elaborated the
description of the system in VHDL language in Xilinx’s
development tool ISE version 14.2, and created all the necessary
functions for each layer. The final system is an ANFIS
architecture with two inputs, three membership functions per
input and nine fuzzy rules that were implemented in a FPGA
device Spartan-6 XC6SL45, and the logical and timed
simulations were done in ModelSim SE 10.0c.

From the training results (membership functions and
polynomials parameters) we decided to use a fixed point
representation with signed numbers in two’s complement [6],
and a word size of 16-bit that was split as follows (Fig. 5).

S Integer fractional

1 4 11

Most significant

bit

Radix point

Fig. 5 Binary representation.

In Fig. 6 the blocks diagram of ANFIS as it was implemented
in the FPGA is depicted. It is conformed of three main
subsystems that are representative of ANFIS architecture: 1)
membership functions; 2) fuzzy rules evaluation and MIN
operator; 3) defuzzyfier. Control signal (CTRL) has a period of
100 ns and pulse width of 5 ns which is use to enable the memory
blocks.

DEFUZZIFIER

FIRST ORDER

POLYNOMIALS

COEFFICIENTS

OUTPUT

DATA

MEMBERSHIP

FUNCTIONS
TEST

DATA

CTRL

MIN

Xi

Yi

LAYER 1 LAYER 2 LAYER 3,4,5

Ai

Bj

Wij fi

Zi

pi qi ri

Xi

Yi

i = 1...165

i = 1...3
j = 1...3

i = 1...165

i = 1...9

i = 1...9

CTRL

Fig. 6 ANFIS digital system.

a) Test data.

This block has two banks of random access memory

(RAM), where are stored the test vectors (radiation and

temperature) used during the training in Matlab, in this way,

each memory bank has 165 16-bit-words. The access to these

memories is carried out with the rising edge of CTRL signal.

b) Membership functions.

This subsystem computes the grade of membership for each

input vector starting with the falling edge of CTRL signal. It

consists of two RAM memory banks of 2048 memory locations

since the universe of discourse is defined within [0 1] interval.

See Fig. 7.

A1

RAM
A2

A3

B1

B2

B3

CTRL

X Y
RAM

Fig. 7 Memory blocks of membership functions.

Fig. 8 shows the VHDL implementation of membership

functions in ModelSim for radiation data.

Fig. 8 Current membership functions for input 1.

c) MIN operator.

This subsystem evaluates the antecedents of each rule to
generate all the possible permutations of them. As we have three
membership functions per input, there will be nine permutations
(Wij) corresponding to the strength of each rule. The T-norm
operator utilized is the MIN, which is implemented through a
magnitude comparator that selects the minimum antecedent by
means of a multiplexer as shown in Fig. 9.

A <= B

Ai

Bj

MUX

I0

I1

i = 1...3

j = 1...3

Wij

Fig. 9 Fuzzy rules evaluator subsystem.

d) 1st order polynomials.

The polynomials coefficients [pi, qi, ri] generated by training
in Matlab are stored as constants in registers to calculate Zi, as
shown in (1).

 𝑍𝑖 = 𝑋𝑝𝑖 + 𝑌𝑞𝑖 + 𝑟𝑖 (1)

In this way, the system consequents are computed as
depicted in Fig. 10.

pi qi ri

i = 1...9

X Y

Zi

i = 1...9

Fig. 10 1st order polynomials evaluation.

e) Defuzzifier.

This subsystems delivers the crisp output of ANFIS (fi) by
realizing the operations of layers 3, 4 and 5 of Fig.1, and is
estimated as shown in (2).

 𝑓𝑖 =
Σ𝑊𝑖𝑗𝑍𝑖

Σ𝑊𝑖𝑗

 (2)

This subsystem executes 3 tasks:

1. Multiplies the rule strengths from MIN operator
subsystem by its consequent (Wij* Zi).

2. Calculates the numerator which is the sum of products
(Wij* Zi), and the denominator which is the sum of all the rule
strengths Wij.

3. Evaluates the quotient of previous numerator and
denominator to obtain the crisp output of ANFIS (fi) (Fig. 11).

fi

W11

W33

W11

W33

Z1

Z9

Fig. 11 Defuzzifier

f) Output data.

 Output data of (fi) are stored in a RAM block, whose access
is in the rising edge of CTRL signal. They will be used later for
analysis. Fig. 12 shows the simulated output of ANFIS plotted
in ModelSim in analog format.

 Fig. 12 Output data fi for the short-circuit current.

Fig. 13 Comparison between output current of photovoltaic panel and ANFIS implementation on FPGA.

 Logical resources utilized.

 Table 1 shows the additional logical resources used in the

Spartan-6 XC6SL45 device for the ANFIS implementation.

As we can see, the resources most used are the multipliers

embedded within DSPs blocks due to our parallel process.

Table 1. Resources used for the FPGA
Logic Utilization Used Available Utilization

Number of Slice LUTs 936 27288 3%

Number of Slices 446 6822 6%

Number of RAM

B16BWERs

20 116 17%

Number of RAM

B8BWERs

2 232 1%

Number of DSP48A1s 31 58 53%

V. RESULTS

In this paper we have emphasized simulations and results
for short-circuit current, however the same was done for open
circuit voltage. Due to the fact ANFIS has just one output, in
the FPGA implementation there is a multiplexer that uses a
control signal to interchange the calculated membership
functions and polynomials coefficients either for voltage or
current, so the system will work for one or the other.

Fig. 13 displays a graphical comparison between short-
circuit current from photovoltaic panel (red line) and the
output data produced by the FPGA implementation (blue
line); as we can observe, visually there is a very high matching
that allows us to affirm that the VHDL ANFIS
implementation can properly emulate the behavior of the
photovoltaic panel.

Below there is a scatter graph showing the regression line
and the lineal equation that allows us to predict the output that
will have our ANFIS system for any arbitrary target, also it is
shown the Pearson correlation coefficient (R=0.9999), which
indicates the degree of dependence existing between expected

test data (targets) and output data generated by our digital
system (Fig. 14).

Fig. 14 Regression graph Target vs. Output.

In Fig. 15 is depicted the response time of our digital

implementation measured with a Tektronix MSO 2012

oscilloscope, where it is registered a 70ns delay among CTRL

fall edge (blue) and ANFIS output signal fi (red), after all the

bits reached its stable value for a given input vector that

originated the worst delay.

Table 2 shows a comparison of the results obtained with

digital ANFIS and the ANN architecture presented in a

previous paper [1]. There are shown the mean square error

(MSE), the Pearson correlation coefficient (R) and the

response time.

Fig. 15 Response time of digital ANFIS system.

Table 2. Comparison between ANN and ANFIS

implementations.

 RNA (7-9-2)

 ISC VOC

 ANFIS

 ISC VOC

MSE

2.0182E-07

10E-04

3.9939E-08

9.7904E-04

R

0.9998

0.9972

0.9999

0.9973

tpd 1200 ns 75 ns

VI. CONCLUSIONS

In this work, we implemented an ANFIS architecture for
emulating a photovoltaic panel that can operate in real time,
this characteristic is very useful for analysis in the lab and in
the field. We observed response times from 40 to 75 ns (the
worst case) due to our parallel processing.

From results shown in table 2, we note that the
photovoltaic panel emulator implemented with ANFIS and
that realized with ANN, produce suitable values for short-
circuit current (ISC) and open circuit voltage (VOC) so, with any
implementation it is possible replicating the behavior that
would have a commercial photovoltaic panel when excited
with radiation and temperature.

The choice to employ ANN or ANFIS implementation
will rely on the application speed needs, as ANFIS response
time is significantly less, but with regards to error and utilized
resources of the FPGA [1] we cannot conclude which one has
the better performance.

REFERENCES

[1] G.M Tornez, F.Gómez, J.A. Moreno, L.M. Flores "FPGA
Development and implementation of a solar panel emulator". In 10th
International on Electrical Engineering, Computing Science and
Automatic Control CCE 2013 .

[2] J. S. R. Jang, C. T. Sun and E. Mizutani, "Neuro –Fuzzy and Soft
Computing: A Computational Approach to Learning and Machine
Intelligence". Prentice Hall, 1997.

[3] P. Pande, P. Paikrao, D. Chaudhari "Digital ANFIS Model Design".
International Journal of Soft Computing and Engineering (IJSCE), Vol
3, March 2013.

[4] H. Saldaña, C. Cárdenas "Design and implementation of an adaptive
neuro fuzzy inference system on an FPGA used for nonlinear function
generation". IEEE Third Latin American Symposium on Circuits and
Systems (LASCAS), pp.1-5, 2010.

[5] H. Saldaña, C. Cárdenas "A digital hardware architecture for a
three-input one-output zero-order ANFIS". IEEE Third Latin American
Symposium on Circuits and Systems (LASCAS), pp.1-4, 2012.

[6] A. Savich, M. Moussa, S. Areibi "The impact of arithmetic
representation on implementing MLP-BP on FPGAs: A study". IEEE
Trans. on Neural Networks, Vol.18, No.1, January 2007.

