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Abstract — In this manuscript we present the implementation 

in FPGA of ANFIS system (Adaptive Network-based Fuzzy 

Inference Systems) for a two-input architecture with three 

membership functions per input and nine fuzzy rules, used to set 

up a photovoltaic panel emulator. The starting point is the 

photovoltaic panel electric analog model simulated with ELDO, a 

tool of Mentor Graphics Suite, having as inputs irradiation and 

temperature from a meteorological data base so we can obtain the 

short-circuit current (ISC) and open circuit voltage (VOC) of the 

panel. With this information, ANFIS was trained within Matlab 

environment to approximate the photovoltaic panel response. The 

training was carried out for both, current and voltage, 

independently, and once achieved minimum error parameters, 

they were downloaded into the FPGA implemented architecture 

in order to assess its performance. 
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VHDL, FPGA. 

I. INTRODUCTION 

The use of alternative energy sources has an increasing role 
to substitute traditional sources; particularly, solar energy results 
very attractive since it presents an ample availability all around 
the world and is a clean energy source. Hence, the need of 
working with photovoltaic systems is increasing day after day. 
In this work we focus solely in developing the photovoltaic 
panel model, which is where solar energy is converted to 
electrical energy. Attaining the analytical model of a 
photovoltaic panel becomes a complex task, because there are 
many environmental factors intervening; so, in order to emulate 
its behavior, we can draw upon artificial neural networks (ANN) 
as we reported in a previous work [1]. However, with ANNs we 
cannot get an easily interpretable system and, if there are 
changes in the data base, the whole system must be trained from 
scratch and there is no possibility of using prior knowledge. 

A neurofuzzy system combines the advantages of fuzzy 

systems, which deal with the knowledge that can be explained 

and understood, and ANN that deal with implicit knowledge 

that can be acquired by means of learning. The learning of a 

neural network provides a good methodology of adjusting the 

expert's knowledge (prior knowledge), defined by the fuzzy 

system, by generating fuzzy rules and adding membership 

functions automatically, or modifying those that are already 

defined. Alternatively, the fuzzy logic enhances the capacity of 

generalization of a neural network, giving it a more reliable 

output when is required an extrapolation that goes beyond the 

limits of the training data. 

Many developments of neurofuzzy systems have been made 
in software, taking advantage of the modern computers 
capacities; however, an important characteristic of these systems 
is its parallel architecture, which cannot be built precisely with 
a system that executes programs in a sequential form (software). 
For this reason, arises the need of using circuits that truly carry 
out parallel processing, obtaining in this way a better 
performance, and as the system does not depend on a computer, 
it might be implemented as a portable system and consequently 
with less power consumption. This parallelism can be 
accomplished with devices as FPGAs (Field Programmable 
Gate Arrays). 

The model of the photovoltaic panel to be implemented in 
the FPGA was approximated with ANFIS and consists of two 
stages: software implementation, which offers great flexibility 
for training and simulation of the architecture for general 
purpose applications, and hardware implementation, that allows 
to perform real time simulations. The software stage was carried 
out in Matlab, for training and simulation of the system. In the 
second stage, timed simulation and FPGA implementation were 
done by using the Xilinx Suite. The FPGA chip used is one of 
Spartan 6 family. 

II. ANFIS ARCHITECTURE 

ANFIS is the straight result of a computation methodology 
that arose in the 90’s called Soft Computing, which incorporates 
the ability of human mind for reasoning and learning in an 
ambiguous and imprecise environment. ANFIS is a kind of 
adaptive network that, functionally, is equivalent to a fuzzy 
inference system [2]. This architecture allows representing 
directly Sugeno and Tsukamoto fuzzy models. Fig.1 shows the 
layers that constitute it, in this case for a two-input architecture, 
with three membership functions for each input and nine fuzzy 
rules. The five layers that integrate it are the following: Layer 1, 
membership functions (bell-shape functions with three 
parameters ai, bi and ci); layer 2, T-norm operator (MIN 
operator); layer 3, normalization; layer 4, first order polynomials 
multiplication (with three parameters pj, qj and rj); layer 5, total 
sum, where i=total number of membership functions and j=total 
number of fuzzy rules. 

In a fuzzy inference system (FIS), the antecedent of a rule 
defines a local fuzzy region while the consequent describes the 
behavior inside that region by means of several components. For 
a Sugeno model, such components can be a constant (order ‘0’ 
model) or a lineal equation (1st order model). For this last case, 
a fuzzy rule is described as follows: 



If x is A1 and y is B1, then z1 = p1 x + q1 y + r1 

where A1 and B1 are linguistic labels (such as “small”, “tall” or 

“new”). 

ANFIS architecture is shown in Fig. 1 The layers drawn with 

square nodes are adaptable, that is, their values are adjusted 

when the system is trained; layers drawn with circle nodes 

remain invariable before, during and after the training. The 

training is executed in two steps: one forward pass, maintaining 

the premise parameter (membership functions) fixed, applying 

the least-squares estimator and having as signals those generated 

by the node outputs. The other step is a backward pass, where 

the error signals propagate backward and the premise 

parameters are updated by gradient descent while holding the 

consequent parameters (output polynomials) fixed. 

 

 
Fig. 1 ANFIS system with two inputs and nine rules. 

III. SOFTWARE IMPLEMENTATION 

The data set used for training ANFIS should be defined such 
that it is contained within the two-dimensional fuzzy space 
established as the universe of discourse for the two input 
variables of the system (X and Y). For our application, the 
training data are generated from the known meteorological data 
base, first performing a normalization so both inputs (radiation 
and temperature) and output targets (voltage and current) be 
within the fuzzy space.  

Training for current and voltage were done separately to get 
the sets of premise and consequent parameters to be programed 
in the FPGA. The total number of vectors in the data base is 
1097 that stands for three years of monitoring in the zone, and 
they were divided as follows: 70% for training (967), 15% for 
testing (165) and 15% for checking (165). 

Fig. 2 shows all the input/output vectors set without 
normalization, as they were generated from the electric analog 
model. 

 

Fig. 2  Inputs (radiation and temperature) and output targets 

(voltage and current) 

Fig. 3 shows Matlab’s ANFIS editor displaying the test 

vectors for current after 150 epochs of training. 

 

Fig. 3 ANFIS user interface. 

After 150 epochs of training, the premise parameters 
obtained for current are the following: 

Input 1: 
 Bell 1: a = 0.3205, b = 1.992, c = 0.0255 
 Bell 2: a = 0.2857, b = 2.007, c = 0.511 
 Bell 3: a = 0.1046, b = 2.008, c = 1.058 
Input 2: 
 Bell 1: a = 0.3245, b = 2.007, c = 0.1798 
 Bell 2: a = 0.1953, b = 2.009, c = 0.4012 
 Bell 3: a = 0.184, b = 2.01, c = 0.992 
Polynomials [pj, qj, rj]: 

1) [1.006 -0.005712 0.0007382]  
2) [0.9895 0.007186 -0.0002577]  
3) [1.009 0.008716 -0.007701]  
4) [0.995 0.005629 -0.001885] 
5) [1.009 -0.0004158 -0.005918] 
6) [1.005 0.01646 -0.0175] 
7) [0.9346 -0.01131 0.05408] 
8) [0.9967 0.01971 0.003931] 
9) [1.003 0.09357 -0.06962] 
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The correspondent membership functions for current are 
shown in Fig. 4. 

 
 

 

Fig. 4 Membership functions for current. 

 

IV. HARDWARE IMPLEMENTATION 

Reviewing the state of the art with regards to ANFIS 
implementation in hardware, we reviewed three papers [3, 4, 5] 
where they perform serial processing and, in this way, they 
consume less logical resources of the FPGA. In contrast, we 
implement parallel processing in order to achieve the smallest 
response time of the system. 

In order to test ANFIS architecture, we elaborated the 
description of the system in VHDL language in Xilinx’s 
development tool ISE version 14.2, and created all the necessary 
functions for each layer. The final system is an ANFIS 
architecture with two inputs, three membership functions per 
input and nine fuzzy rules that were implemented in a FPGA 
device Spartan-6 XC6SL45, and the logical and timed 
simulations were done in ModelSim SE 10.0c. 

From the training results (membership functions and 
polynomials parameters) we decided to use a fixed point 
representation with signed numbers in two’s complement [6], 
and a word size of 16-bit that was split as follows (Fig. 5).  
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Fig. 5 Binary representation. 
 

In Fig. 6 the blocks diagram of ANFIS as it was implemented 
in the FPGA is depicted. It is conformed of three main 
subsystems that are representative of ANFIS architecture: 1) 
membership functions; 2) fuzzy rules evaluation and MIN 
operator; 3) defuzzyfier. Control signal (CTRL) has a period of 
100 ns and pulse width of 5 ns which is use to enable the memory 
blocks.   
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Fig. 6   ANFIS digital system. 

a) Test data.  

This block has two banks of random access memory 

(RAM), where are stored the test vectors (radiation and 

temperature) used during the training in Matlab, in this way, 

each memory bank has 165 16-bit-words. The access to these 

memories is carried out with the rising edge of CTRL signal. 

b) Membership functions. 

This subsystem computes the grade of membership for each 

input vector starting with the falling edge of CTRL signal. It 

consists of two RAM memory banks of 2048 memory locations 

since the universe of discourse is defined within [0 1] interval. 

See Fig. 7. 
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Fig. 7  Memory blocks of membership functions. 

Fig. 8 shows the VHDL implementation of membership 

functions in ModelSim for radiation data. 

 

 

Fig. 8   Current membership functions for input 1. 



c) MIN operator. 

This subsystem evaluates the antecedents of each rule to 
generate all the possible permutations of them. As we have three 
membership functions per input, there will be nine permutations 
(Wij) corresponding to the strength of each rule. The T-norm 
operator utilized is the MIN, which is implemented through a 
magnitude comparator that selects the minimum antecedent by 
means of a multiplexer as shown in Fig. 9.  
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Fig. 9   Fuzzy rules evaluator subsystem. 

d) 1st order polynomials. 

The polynomials coefficients [pi, qi, ri] generated by training 
in Matlab are stored as constants in registers to calculate Zi, as 
shown in (1). 

                              𝑍𝑖 = 𝑋𝑝𝑖 + 𝑌𝑞𝑖 + 𝑟𝑖                                   (1) 

In this way, the system consequents are computed as 
depicted in Fig. 10. 
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Fig. 10   1st order polynomials evaluation. 

e) Defuzzifier. 

This subsystems delivers the crisp output of ANFIS (fi) by 
realizing the operations of layers 3, 4 and 5 of Fig.1, and is 
estimated as shown in (2). 

                                            𝑓𝑖 =
Σ𝑊𝑖𝑗𝑍𝑖

Σ𝑊𝑖𝑗

                                     (2) 

 

This subsystem executes 3 tasks:  

1. Multiplies the rule strengths from MIN operator 
subsystem by its consequent (Wij* Zi).  

2.  Calculates the numerator which is the sum of products 
(Wij* Zi), and the denominator which is the sum of all the rule 
strengths Wij. 

3. Evaluates the quotient of previous numerator and 
denominator to obtain the crisp output of ANFIS (fi) (Fig. 11).     
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Fig. 11  Defuzzifier 

f) Output data.       

 Output data of (fi) are stored in a RAM block, whose access 
is in the rising edge of CTRL signal. They will be used later for 
analysis. Fig. 12 shows the simulated output of ANFIS plotted 
in ModelSim in analog format. 

  

 

 Fig. 12   Output data fi for the short-circuit current. 



 

Fig. 13   Comparison between output current of photovoltaic panel and ANFIS implementation on FPGA.

 Logical resources utilized. 

     Table 1 shows the additional logical resources used in the 

Spartan-6 XC6SL45 device for the ANFIS implementation. 

As we can see, the resources most used are the multipliers 

embedded within DSPs blocks due to our parallel process. 

 

Table 1. Resources used for the FPGA 
Logic Utilization Used Available Utilization 

Number of Slice LUTs 936 27288 3% 

Number of Slices 446 6822 6% 

Number of RAM 

B16BWERs 

20 116 17% 

Number of RAM 

B8BWERs 

2 232 1% 

Number of DSP48A1s 31 58 53% 

 

V. RESULTS 

In this paper we have emphasized simulations and results 
for short-circuit current, however the same was done for open 
circuit voltage. Due to the fact ANFIS has just one output, in 
the FPGA implementation there is a multiplexer that uses a 
control signal to interchange the calculated membership 
functions and polynomials coefficients either for voltage or 
current, so the system will work for one or the other. 

Fig. 13 displays a graphical comparison between short-
circuit current from photovoltaic panel (red line) and the 
output data produced by the FPGA implementation (blue 
line); as we can observe, visually there is a very high matching 
that allows us to affirm that the VHDL ANFIS 
implementation can properly emulate the behavior of the 
photovoltaic panel. 

Below there is a scatter graph showing the regression line 
and the lineal equation that allows us to predict the output that 
will have our ANFIS system for any arbitrary target, also it is 
shown the Pearson correlation coefficient (R=0.9999), which 
indicates the degree of dependence existing between expected 

test data (targets) and output data generated by our digital 
system (Fig. 14). 

 

Fig. 14  Regression graph Target vs. Output. 

In Fig. 15 is depicted the response time of our digital 

implementation measured with a Tektronix MSO 2012 

oscilloscope, where it is registered a 70ns delay among CTRL 

fall edge (blue) and ANFIS output signal fi (red), after all the 

bits reached its stable value for a given input vector that 

originated the worst  delay.  

Table 2 shows a comparison of the results obtained with 

digital ANFIS and the ANN architecture presented in a 

previous paper [1]. There are shown the mean square error 

(MSE), the Pearson correlation coefficient (R) and the 

response time. 

 

 



 
 

Fig. 15  Response time of digital ANFIS system. 

 

 

Table 2. Comparison between ANN and ANFIS 

implementations. 

 

 RNA (7-9-2) 

   ISC                VOC 

             ANFIS 

      ISC                 VOC 
 

MSE 
 

 

2.0182E-07 

 

10E-04 

 

3.9939E-08 

 

9.7904E-04 

 

R 

 

0.9998 

 

0.9972 

 

0.9999 

 

0.9973 

tpd 1200 ns 75 ns 

 
 

VI. CONCLUSIONS 

In this work, we implemented an ANFIS architecture for 
emulating a photovoltaic panel that can operate in real time, 
this characteristic is very useful for analysis in the lab and in 
the field. We observed response times from 40 to 75 ns (the 
worst case) due to our parallel processing. 

From results shown in table 2, we note that the 
photovoltaic panel emulator implemented with ANFIS and 
that realized with ANN, produce suitable values for short-
circuit current (ISC) and open circuit voltage (VOC) so, with any 
implementation it is possible replicating the behavior that 
would have a commercial photovoltaic panel when excited 
with radiation and temperature. 

The choice to employ ANN or ANFIS implementation 
will rely on the application speed needs, as ANFIS response 
time is significantly less, but with regards to error and utilized 
resources of the FPGA [1] we cannot conclude which one has 
the better performance. 
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