
2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)

978-1-4799-6230-3/14/$31.00 ©2014 IEEE

Multilayer perceptron network with integrated training algorithm in FPGA

A.N. Pérez-García1, G.M. Tornez-Xavier1, L.M. Flores-Nava1,

F. Gómez-Castañeda1, J.A. Moreno-Cadenas1
1Department of Electrical Engineering, CINVESTAV-IPN, Mexico D.F., Mexico

Phone (52) 55 5747 3800 ext. 6261

E-mail: {nperez, gtornez, lmflores, fgomez, jmoreno} @cinvestav.mx

Abstract — In this manuscript we present the

implementation of an artificial neural network type Multilayer

Perceptron (ANN-MP or NNMP) in Field-Programmable Gate

Arrays (FPGA), including Back-Propagation training method

based on descendent gradient. This network has 2

reconfigurable hidden layers, adjustable parameters (epochs

and ratio learning) and batch learning. The proposed

architecture aims to reduce the number of logical elements to

be used, so serial processing is utilized. In order to test the

performance of the trained network, a nonlinear function was

approximated with satisfactory results.

Keywords — Artificial neural network, back propagation,

descendent gradient, FPGA.

I. INTRODUCTION

The study of artificial neural networks (ANN) and its
implementation in hardware has become significant in
engineering applications. ANN are used in plentiful variety
of applications. The choice of one ANN depends on the
problem to be solved, either for function approximation,
classification, data fixing, pattern recognition or forecasting.
An ANN architecture consists of a set of connections
between simple nonlinear processing units (neurons) that
team up to produce an output stimulus [1]. Multilayer
Perceptron (MLP) is one of the most widespread
architectures, and Back Propagation is the foremost training
method for adjusting it. For creating a network is very
important its topology, however there is not a clear
methodology for develop and training it. A complex network
is not always the most efficient to reduce the error, it
depends on the application.

Hardware implementation of an ANN for a specific
problem entails two essential stages:

Configuration and training: network type and
configuration (inputs, number of layers, number of neurons
per layer, connections between layers, etc.) are chosen, then
a software tool is used for training. This training produces
the weights and bias with which the network operates
according to the task it was conceived.

Hardware implementation: optimized weights and bias as
well as the best ANN configuration are used to build the
hardware implementation. This information lets know the
number of adders, multipliers, registers, etc., and connections
among them in order to conform the hardware system.

Once there is a hardware implementation, if it were
necessary to change the architecture, adding more

inputs/outputs or using new training data it would be
indispensable to reconfigure and train the network in
software again and carry out a new hardware
implementation.

FPGAs are the most utilized devices for an ANN
hardware implementation due to its reconfigurable platform.
These devices provide orders of magnitude of better
performance compared to software simulation [3]. Hardware
implementation of an ANN with training algorithm have
resulted in various studies, the main focus of these studies is
the implementation of parallel networks that do faster
computations [4, 5, 6]. Other focus is the optimization of
logic resources, networks working serially [8]. When training
a network, the training data can be presented in three training
protocols: stochastic, batch and on-line [2]. However, batch
training not used, because of the complexity in the
calculation of training algorithm.

In this work we present the hardware implementation of a
NNMP that includes a training algorithm based on Back-
Propagation (NNMP-BP) with batch training protocol, which
allows training the network directly in hardware in real time.
The NNMP-BP architecture was built using a generic VHDL
description (Very high speed integrated circuit Hardware
Description Language). For a better understanding of the
implemented algorithm, Back Propagation and its mean
features is introduced in Section II. The proposed
architecture is presented in section III. Some representative
results and conclusions are given in sections IV and V,
respectively.

II. BACKPROPAGATION ALGORITHM

A. MULTILAYER PERCEPTRON

Multilayer Perceptron architecture (MP) is one of the
most employed ANN. A generic MP is shown in Fig. 1 and
consists of the following layers:

Input Layer: It has one or more inputs whose number
depends on the application; each input is connected and
multiplied by the synaptic weight of each neuron of the first
hidden layer.

Hidden Layers: They consist of one or more layers of
neurons; each neuron is connected to all the neurons in the
next layer by a synaptic weight.

Output Layer: It contains the neurons matching the
number of the network outputs.

464

.
 .

 .
 .

Input Layer

X1

X2

X3

Xn

.
 .

 .
 .

. . . .

. . . .

. . . .

. . . .

.
 .

 .
 .

Hidden Layers Output Layer

Yout,3

Yout,1

Yout,j

Yout,2

Fig. 1 Multilayer Perceptron Neural Network Model.

The use of NNMP goes through two stages: a training
phase, where the network learns to realize a particular task
and an operation phase, when the network performs the task
it was trained for. Throughout the training phase there are
two important steps: Forward stage and Back-Propagation
stage.

In the Forward stage the output of the network is
calculated from the input values, that is, input signals
propagate through hidden layers until an output value is
obtained.

In the Back-Propagation stage it is calculated an error
between the expected value and the output obtained in the
forward stage, this error is propagated to the neurons inside
the network via synaptic weights, an error corresponding to
each neuron is returned and the network weights and bias are
updated.

B. FORWARD STAGE

In the Forward stage the output of the network is
calculated. Let’s assume Xi = [X1, X2... Xn] represents the
inputs of the network, Wij is the synaptic weight of neuron j
associated with an input i, Yh, j is the output of neuron j (j = 1,
2... q) in the layer h (h = 1, 2... m); bhj is the bias. The input
of a neuron of the first hidden layer (h = 1) is expressed by
equation (1).

𝑆1,𝑗 = ∑(𝑊𝑖,𝑗 ∗ 𝑋𝑖 + 𝑏1,𝑗)

𝑛

𝑖=1

 … (1)

The accumulation performed in the input of a neuron is
processed by a nonlinear activation function. Tangent
sigmoid function is generally used, and it generates a
continuous output value which varies between -1 and 1. In
Fig. 2 a tangent sigmoid and its derivative are shown.

The output of a neuron in the first hidden layer is
expressed by equation (2):

𝑌1,𝑗 = 𝑓(𝑆1,𝑗) = 𝑓 (∑(𝑊𝑖,𝑗 ∗ 𝑋𝑖 + 𝑏1,𝑗)

𝑛

𝑖=1

) … (2)

Fig. 2 Tangent sigmoid function and its derivative.

Calculations made by neurons in subsequent hidden
layers and the output layer are expressed by equations (3)
and (4).

 𝑆ℎ,𝑗 = ∑(𝑊𝑘,𝑗 ∗ 𝑌𝑘 + 𝑏ℎ,𝑗)

𝑚

𝑘=1

… (3)

𝑌ℎ,𝑗 = 𝑓(𝑆ℎ,𝑗) = 𝑓 (∑(𝑊𝑘,𝑗 ∗ 𝑌𝑘 + 𝑏ℎ,𝑗)

𝑚

𝑘=1

) … (4)

Where k=j(h-1) denotes neuron j of previous layer (h-
1); Wk,j is the synaptic weight associated between
neurons k and j.

C. BACK-PROPAGATION STAGE

In this stage the error signal is propagated backwards
within the network and the descendent gradient algorithm is
used to update weights and bias; the update is performed in
three main steps, namely, 1), 2) and 3).

1) Using equation (5) we get the error for neurons in the
output layer, and equation (6) calculates the gradient of
error.

𝜀𝑜𝑢𝑡,𝑗 = (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑜𝑢𝑡,𝑗) … (5)

𝛿𝑜𝑢𝑡,𝑗 = 𝜀𝑜𝑢𝑡,𝑗 ∗ 𝑓′(𝑌𝑜𝑢𝑡,𝑗) . . . (6)

 Where out,j is the error between the target and the actual

output of neuron j in output layer; out,j is the gradient of
error which is propagated into neurons in hidden layer via
synaptic weights. Equations (7) and (8) respectively
determine the propagated error and its local gradient.

 𝜀ℎ,𝑗 = 𝛿𝑙 ∗ 𝑊𝑗,𝑙 … (7)

 𝛿ℎ,𝑗 = 𝜀ℎ,𝑗 ∗ 𝑓′(𝑌ℎ,𝑗) … (8)

Where 𝑙=j(h+1) represents neuron j in subsequent layer of
h; ; 𝑊𝑗,𝑙 is the synaptic weight between neurons j and l.

465

2) Equations (9) and (10) define respectively the variation
of weights and bias for the first layer and those for
internal layers.

∆𝑊𝑖,𝑗 = 𝛼 ∗ 𝛿1,𝑗 ∗ 𝑋𝑖 ∆𝑏1,𝑗 = 𝛼 ∗ 𝛿1,𝑗 … (9)

∆𝑊𝑘,𝑗 = 𝛼 ∗ 𝛿ℎ,𝑗 ∗ 𝑌ℎ,𝑗 ∆𝑏ℎ,𝑗 = 𝛼 ∗ 𝛿ℎ,𝑗 … (10)

 Where is the learning ratio that governs the degree of
convergence of the network to learn.

3) Weights and bias updating.

𝑊𝑖,𝑗
(𝑛+1)

= 𝑊𝑖,𝑗
(𝑛)

+ ∆𝑊𝑖,𝑗
(𝑛)

 𝑏1,𝑗
(𝑛+1)

= 𝑏1,𝑗
(𝑛)

+ ∆𝑏1,𝑗
(𝑛)

 … (11)

𝑊𝑘,𝑗
(𝑛+1)

= 𝑊𝑘,𝑗
(𝑛)

+ ∆𝑊𝑘,𝑗
(𝑛)

 𝑏ℎ,𝑗
(𝑛+1)

= 𝑏ℎ,𝑗
(𝑛)

+ ∆𝑏ℎ,𝑗
(𝑛)

 … (12)

 Where (𝑛) represents present values and (𝑛 + 1) are the
values to be updated for use in the next iteration.

D. BATCH TRAINING

Calculation realized in the forward and the back-
propagation stages for each presented pattern, embodies one
learning iteration (epoch). When training a network with
protocol stochastic or on-line, the gradient is calculated and
the weights are updated for each iteration. In batch
processing, the gradients obtained for each iteration are
added and averaged, and the weights are updated when all
the training patterns are presented.

III. HARDWARE IMPLEMENTATION

The network that we implemented in hardware has the
following features: 2 inputs (X, Y), 2 hidden layers and 1
output layer to conform a 2-5-2-1 architecture (Fig. 3).
Depending on the problem complexity, we use switches to
activate/deactivate the neurons that conforms the hidden
layers so we can evaluate the proposed training algorithm for
different hidden layer structures.

X

Y

Z

Fig. 3 Hardware reconfigurable network 2-5-2-1.

A. HARDWARE

When implementing a ANN in an FPGA one key thing to
consider is the use of logical resources, particularly the
multipliers included in DSP block, because digital
implementation of neurons generally uses three multipliers
per neuron, as will be explained in the next section,
moreover the number of DSP's is limited for each FPGA
family. For our system, we utilized an Atlys development
board that uses a Spartan-6 XC6SL45 device of Xilinx.

For the implementation we worked with 16-bit words,
utilizing a fix-point format [9] with two-complement signed
numbers. The word was divided as shown in Fig. 4.

Fig. 4 16-bit fix-point number format.

B. BASIC NEURON

According with (2) and (4), a neuron executes two main
processes:

1. The sum of products of the inputs by the weights plus
their bias.

2. Evaluation of the activation function (tangent sigmoid).
This was done in digital form using line segments from
which the slope (a) and intercept (c) are obtained for each
line [7].

 In our case, an additional process is the estimation of the

activation function derivative.

R
e

g
is

te
r

bias

Wij

Xi

a c

-1

n Y(n)

- dY(n)

MULTIPLIER ACCUMULATOR (MAC)

ACTIVATION FUNCTION

DERIVATIVE OF THE

ACTIVATION FUNCTION

 Fig. 5 Processes performed in a neuron.

Neuron digital implementation requires three multipliers
to accomplish the processes described above (Fig. 5), this
might consume most DSPs available in the FPGA; for
reducing this amount we work with serial processing
technique [4, 5, 6]. Fig. 6 depicts the use of a single
multiplier for the three processes described above.

 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 = 1.500488

LSB

Fractional Integer S

MSB Radix point

466

Xi

n

Y(n)

MUX

MUX MUX

Wij Y(n)a bias -1c

n

Y(n)

-dY(n)

Fig. 6 Neuron serial processing.

Multiplexers are controlled by a selection signal that
operates as follows:

1. For the first selection value, input (Xi), the synaptic
weight (Wij) and bias are picked to get the output value
(n) of MAC function; this value is stored in a register and
fed back to the multiplexers.

2. When the selection signal changes to the second value,
(n) is multiplied by the slope (a) of the selected line and
added to its ordinate (c), in this way the activation
function is evaluated to obtain the output of the neuron
Y(n), which is stored in the register; this value is fed
equally to the multiplexers.

3. With the next value of the selection signal we get the
derivative of the activation function by multiplying Y(n)
by itself and adding (-1).

C. GENERAL STRUCTURE

The NNMP-BP implemented in hardware is configurable
and the network architecture to be used can be selected; the
learning ratio (lr) as well as the number of training epochs
can be set. In Fig. 7 the NNMP-BP architecture is shown.
There are three main modules whose function is explained
below.

DATA

INPUTS

T X

FEED

FORWARD

BACK

PROPAGATION

UPDATE

WEIGHTS

CONTROL
Epochs

Batch

Update

F_F B_P

HOME

WEIGHTS

home

new

T-Yout
err

RAM

RESET

CLK

lr

Epochs

RAM

lr

DW

DB

Y

dY

nW

nB

Fig. 7 NNMP-BP implementation.

a) Feed forward

This module contains the network architecture, which has
three neuron layers, each neuron corresponds to a calculation
block as previously explained.

The output of this module provides the calculated values
of each neuron Yh,j and Yout,j which correspond to equations
(2 and 4). The derivative of each block dYh,j y dYout,j is also
obtained.

b) Back Propagation

This module calculates the deltas of weights and biases,
corresponding to equations (6-10). Due to the large number
of multipliers needed for these, serial processing technique is
applied too.

c) Weights Update

 Synaptic weights and biases are updated in this module
for each training epoch, in accordance with (11) and (12),
carrying out the following tasks:

1. Sum of synaptic weights deltas obtained for each

training pattern.

2. Mean of calculated deltas (batch training) to obtain

the new synaptic weights values, which will be

transmitted to the module output.

Besides the 3 basic modules, there are other modules

used for the neural network synchronization and autonomy.

d) Control

This module generates the signals to control the flow of
information throughout the other modules and to enable or
disable them for the realization of different processes:

Training

This process is performed using Feed Forward and Back
Propagation modules which are activated using F_F and B_P
signals, in this step we utilize 1024 vectors.

Neural network testing

Once the network has been trained, the system is set in
testing mode using F_F signal, which activates only the Feed
forward module and disables Back Propagation and weight
updating processes. In this phase the neural network employs
only the updated synaptic weights and biases, and the output
produced by the network for the 128 test data is evaluated.

The training of an artificial network at software level
(Matlab) uses different stop criteria (epochs, performance,
validation checks, etc.), thus it is possible to monitor the
performance function (mean square error MSE) to be
minimized. In this work we use the number of epochs as stop
condition which can be adjusted as described before.

e) Data Inputs

In this module the 1024 training data and the 128 test
data are stored.

467

f) Home Weights

In this section initial synaptic weights and biases are
stored. To obtain these values it is used Matlab that generates
them randomly.

D. FPGA UTILIZED RESOURCES

One of the objectives proposed in this paper is the
optimization of logic resources, so we had to limit the
training and test data to be represented by power-of-two
numbers in order to simplify the averaging by elimination
division and just using arithmetic shift instead. Table 1
resumes FPGA logic resources used for implementing our
NNMP-BP architecture.

Table 1. Resources used by the FPGA

Target Device: xc6slx45-3csg324

Slice Logic

Utilization
Used Available Utilization

Number of Slice

Registers
6,151 54,576 11%

Number of Slice

LUTs
6,384 27,288 23%

Number of occupied

Slices
2,538 6,822 37%

Number of RAM

B16BWERs
3 116 2%

Number of RAM

B8BWERs
3 232 1%

Number of DSP48A1s 11 58 18%

Number of

PLL_ADVs
1 4 25%

IV. TESTING AND RESULTS

In order to evaluate the implemented architecture, the
task of approximating a nonlinear function was proposed
(Fig. 8). We tested 2-5-1 and 2-5-2-1 architectures.

Fig. 8 Test function 𝒛 = 𝟒𝒙𝒆−𝟒(𝒙𝟐+𝒚𝟐)

The training was made for different learning rates and
different epochs. In Fig. 9 we can see the graphic of MSE
during the training of the 2-5-2-1 network architecture for
different learning rates; we observe that a learning rate lr =
0.7 produced a MSE of 0.00143.

Fig. 9 MSE for different learning ratios in 2-5-2-1
architecture.

To evaluate the implementation it was created a module

that calculates the MSE for the test data. The values obtained
for the two selected architectures are presented in Table 2.

 Table 2. Results of testing both architectures

 Architecture (2-5-1) Architecture (2-5-2-1)

MSE 0.01434 0.00143

R 0.9441 0.9936

lr 0.55 0.7

Epochs 10000 10000

From the hardware implementation, FPGA data were

extracted for analysis in Matlab. Fig. 10 shows the MSE for
the 128 test data; it represents the squared difference between
the output data produced by the FPGA and the targets. We
note that for this application our system has a maximum
square error of about 0.01.

Fig. 10 Quadratic error for 2-5-2-1 architecture.

468

In Fig. 11 is presented a scatter plot with the regression
line and the line equation that will help us to make future
predictions about the output that would produce our digital
system from any input value. Additionally, it is shown the
Pearson correlation coefficient, which indicates the degree of
dependence between expected test data and the output data of
the digital system and it has a value R = 0.9936.

Fig. 11 Correlation coefficient (R) for the test set and 2-5-2-1

architecture.

The results can not to be compared directly with other
previous studies, as each study takes a different focus, using
different architectures and implemented in different
technologies. However, we can mention that in this work
focused on the optimization of resources (one DSP by
neuron) and train the network using a protocol type batch.
Table 3 compares these features with other studies.

V. CONCLUSIONS

In this paper, we presented the implementation of an
ANN architecture with Back Propagation training algorithm.
It is reconfigurable, allowing us to change its learning rate
and training epochs in hardware to train the network in real
time without the need of reprogramming the FPGA for each
change of these parameters.

Serial processing implementation allows significant
saving of FPGA logical resources, but the main drawback of
this technique is in reducing its performance, increasing the
network response time, which was 1.96 ms per epoch for a
50 MHz clock signal. In this first version the number of
training epochs was implemented as stopping criterion; for

an improved version we want to add more stop criteria to
achieve a better performance of the training algorithm.
Another point to consider is to include a routine for
generating random initial weights and biases within the
implemented system.

ACKNOWLEDGMENTS

To my advisers for their thought assistance, and Dr.
Oliverio Arellano Cardenas for his technical support for the
elaboration of this manuscript.

REFERENCES

[1] M.T. Hagan, H. B. Demuth, M. Beale, “Neural Network Design”,
PWS Publishing Company, 1996.

[2] Richard O. Duda, Peter E. Hart, David G. Stork, “Pattern
Classification”, John Wiley & Sons, 2001.

[3] Scott Hauck "The Roles of FPGAs in Reprogrammable Systems".
Proceedings of the IEEE, Vol. 86, No. 4, pp. 615-639, April, 1998.

[4] Rafael Gadea, Joaquín Cerdá, Francisco Ballester, Antonio
Mocholí, "Artificial Neural Network Implementation on a single
FPGA of a Pipelined On-Line Backpropagation". Proceedings of The
13th International Symposium on System Synthesis, IEEE, 2000.

[5] Vijay Pandya, Shawki Areibi, Medhat Moussa, "A Handel-C
Implementation of the Back-Propagation Algorithm On Field
Programmable Gate Arrays". Proceedings of the 2005 International
Conference on Reconfigurable Computing and FPGAs (ReConFig),
IEEE, 2005.

[6] Mohammed Bahoura, Chan-Wang Park, "FPGA-Implementation
of High-Speed MLP Neural Network". Proceedings of The 18th
International Conference on Electronics, Circuits and Systems
(ICECS), IEEE, 2011.

[7] G.M Tornez, F.Gómez, J.A. Moreno, L.M. Flores "FPGA
development and implementation of a solar panel emulator". In 10th
International on Electrical Engineering, Computing Science and
Automatic Control CCE 2013.

[8] Liu Shcushan, Chen Yan, Xu Wenshang, Zhang Tongjun, "A
single layer architecture to FPGA implementation of BP artificial
neural network ". 2nd International Asi Conference on Informatics in
Control, Automation and Robotics (CAR), 2010.

[9] A. Savich, M. Moussa, S. Areibi "The impact of arithmetic
representation on implementing MLP-BP on FPGAs: A study". IEEE
Transactions on Neural Networks, Vol.18, No.1, January 2007.

Table 3. Performance comparison

Reference Architecture Precision MSE Protocol Focus DSP’s

This work 2-5-2-1 16-bit fixed-point 0.00143 Batch Serie 11

[5] 5-3-3 16-bit fixed-point 0.03 stochastic Parallel --

[4] 2-6-3-2 16-bit fixed-point 0.05 On-line Pipelined --

[6] 1-2-1 18-bit fixed-point -- On-line Pipelined 14

469

