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Abstract — This work presents important considerations
regarding the dynamic response of a CMOS-MEMS spring-
mass-system to step (Heaviside) and ramp (linear input)
force stimuli. In the design CMOS-MEMS accelerometers
most performance estimations and calculations are based in
the steady-state behavior of damped systems, the present
report focuses in the transient response and oscillatory
error due to external forces actually present in many real-
world yet simple applications where vibrations and
undesired disturbances might appear. The dynamic model
and transfer function of a micro-spring-mass system is
obtained according to the technological fabrication
parameters of a typical CMOS-MEMS micro-sensor. The
displacement and therefore capacitance shift of the micro-
structure is modeled and simulated primarily while
neglecting gravity and the damping phenomena related to
air-filled micro gaps inherent to the micro-machining (wet
chemical) process needed to release movable metallic
structures out of a conventional CMOS integrated circuit.
The results are intended to be considered in the design of
space applications such as spacecraft instrumentation.

Index Terms — Accelerometer, CMOS-MEMS, Dynamic
Model, Mechanical Model, MEMS, Step Response.

[. INTRODUCTION

HE technology known as CMOS-MEMS combines in a

single chip (silicon die) the capabilities of both CMOS
conventional circuitry and the electromechanical micro-devices
and structures (MEMS). When it comes to inertial sensors, the
basic micro-structure used to measure acceleration is a mass-
spring-system-like mechanism coupled to a variable capacitor
which capacitance value varies proportionally to the
displacement of the proof-mass. As this proof-mass approaches
closer to another also metallic plate the capacitance given by
(1), the parallel plate capacitor, increases. Parallel plate
capacitance is proportional to the plate area A, the electric
permittivity €, (air or vacuum), and the inverse of the gap d
between plates. The relation between the mass-spring system
displacement and the variable capacitor is shown in Fig. 1.
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Fig. 1. Schematic for a typical mass-spring-system-based CMOS-MEMS
accelerometer featuring a main proof-mass attached to four springs.
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As seen in [1] capacitors might not be simple plates but
complex tridimensional structures with many capacitive
components, nevertheless, neglecting fringe effects, the
approximation for total capacitance is quite fair.

CMOS-MEMS process consists in having a previously
designed and fabricated conventional CMOS chip where the
electronic control/processing circuitry coexist along with one or
more metal patterns, and release the later in order to achieve full
electromechanical functions. As expected, these metallic
structures are made out of the metal layers intended to
interconnect devices as usual in any CMOS integrated circuits.
As reported in [2] the composition and thicknesses of these
metal layers varies according to the fabrication process as some
processes feature TiN platting on their metal pathways for
contact improvement purposes. However, an aluminum-copper
alloy can be found in most conventional CMOS fabrication
technologies. Since copper is typically under 5% in
concentration, the calculation for density and stiffness in this
report are based in the aluminum mechanical properties.
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Each one of the four springs considered in the schematic seen
above is formed by a series of multiple aluminum beams, every
beam can be modeled in a similar way to that proposed by
Hook’s Law in (2), in order to determine the equivalent stiffness
k of a particular beam of length L it is useful to apply the
cantilever deflection expressions (3) for a given Young’s
Modulus E and inertia momentum [ when a load force P is
actuating on the free end.

F =kx
F
k=—
X
(2)
PL?
beam = ﬁ
(3)

Figure 2 represents the analogy between traditional coil-like
and cantilever springs. Must be also considered the effect of
having multiple beams connected to form the spring and
multiple springs in series and parallel configurations holding
the proof-mass up. Equation (4) stands for the stiffness k of a
single beam, while (5) represents an approximation to the total
stiffness in a spring formed by n beams of length L neglecting
the length of the joints between beams and assuming the length
of each beam is many times greater than the width and
thickness. Finite-element analysis (FEA) results shown in
Figure 3 for multi-beam spring validates (5).

3EI

beam = L_3
(4)

3EI

spring ~ m
(5)

Equations (6) and (7) are the equivalent stiffness for two
springs a and b connected in parallel and series configurations
respectively. As seen previously in Figure 1, all four spring will
work together to deliver a total stiffness k described in (8).

kaw = ke + ky
kqk ©
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kap = ko + ki
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Fig. 2. Equivalent use of different kinds of spring.
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Fig. 3. FEA validation of the multi-beam spring behavior according to the
number n of beams (1, 2 and 4 beams).

From (1), (3), and (8) there is a correlation between the
capacitance C and the displacement of the proof-mass that is
suspended by an equivalent spring of stiffness k which
restoring force is opposite to the external forces accelerating the
proof-mass.

II. DYNAMIC MODEL

A general expression for the proof-mass dynamics and
therefore the variation in distance d separating the capacitor
plates can be derived from a free-body diagram (Figure 4) and
the Newton’s second law. Equation (9) describes the
accelerated displacement of mass m as the restoring force of the
equivalent spring with stiffness k acts in opposition to an input
external force u(t). The Laplace transform is applied to (9) in
(10) and initial conditions x(0) and x(0) are assumed to be
equal to zero. From the higher exponent in the denominator of
transfer function (11) which is the rational relation between the

displacement output and force input stimuli, we can
characterize the system as one of second order.
m¥ = u(t) — kx
mi+ kx —u(t) =0
©)

Fig. 4. Free-body diagram representing a system with mass m and a single
spring with equivalent stiffness k being actuated by a force u(t).
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Fig. 5. Mass-spring system open-loop representation.
m(s2X(s) — sx(0) — x(0)) + kX(s) —U(s) =0

X(s)(ms? + k) =U(s)
(10)

X(s) B 1
U(s) ms2+k

an

The open-loop representation shown in Figure 5 is sufficient
to determine the response of the system to a unary step input.

III. STEP AND LINEAR RESPONSE

Neglecting gravitational and air-related friction or damping
effects, as could be considered for extra-planetary aerospace
applications, the step response is given by (12), where X(s) is
the Laplace transform of position x of the proof-mass being
x(t) = 0 the equilibrium state of spring k, and 1/s the Laplace
transform of unary step force input.

X(s) = 1 1
8= s (ms?+k)
(12)

By partial-fraction decomposition a final expression (13) for

X(s) is obtained in the form needed to apply the inverse
Laplace transform.

S

1/1
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k k
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m

(13)

The dynamic expression for mass m in the time domain is
given by (14). This expression is general and must be put in the
context of micro mechanical systems by using appropriate m
and k parameters.

t—11 kt
x()—k cosm

Typical dimensions for both proof-masses and springs in
MEMS accelerometer designs range from 50 to 500 um due to
the size of silicon dies which are usually of 1 to 4 mm?2. A spring
with beams 100 um long (1) and 3 pm wide (w,,), and a square
proof-mass with 100 um a side, could be a good approximation
to standard parameters, especially for CMOS-MEMS
technology where the design space is limited as chips also
contain the processing electronics and wire-bonding pad frame.

(14)

— — (1/k) * step input
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Fig. 6. Oscillatory response behavior to step input according to a mass-spring
system neglecting gravity and air damping.
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Fig. 7. Sinusoidal error signal in ramp response.

Considering aluminum structures with thickness t = 0.77 um
thickness of the top metal layer (Metal 3) in C5 conventional
CMOS fabrication process from On-Semi [3] a 10-beam spring
would have a stiffness k = according to (5) and (15) where
moment of inertia for a single beam is I = tw3/12 and E is the
Young’s Modulus. Mass for the proof-mass is given by (16)
where p is the density of aluminum and V the volume of the
proof-mass.

_ 3(70GPa)(1.7325 x 1072*m*)
h (10)(100 x 10-6m)3

= 0.0364 N/m
(15)
m = pV = (2700 kg/m3)(1 x 10™* m)?(0.77 x 10~°m)

m=2.08x 10" kg
(16)

As in (14), the dynamic expression for position x(t) as a
response to a linear input u(t) = t (ramp) is obtained.
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As can be seen in figures 6 and 7 from system simulation and
in agreement with (14) and (18), a high-frequency oscillatory
permanent error is present and could prevent a CMOS-MEMS
device from achieving a stable output response.

(18)

This result is important to be considered especially for sensor
with floating-gate-based electronics, as long as the transfer
function for the capacitive voltage divider reported in [4] and
[5] is one of order zero so no attenuation of high frequency
components would help to filter the output signal.

IV. AIR DAMPING EFFECTS ON SENSOR’S APPLICATION

As a sort of comparison with the results above, (19) is the
transfer function including the damping coefficient b which
according to [6] and [7] the air damping coefficient for the
typical CMOS-MEMS capacitive gaps is of about 1 X
107 Ns/m also, figures 8 and 9 that represent the air-damped
response to step and ramp inputs respectively.

X(s) 1
U(s) ms2+bs+k

(19)

As seen in Figure 8, the stationary response of the damped
system to step inputs is only dependent on the total gain of the
open-loops system, in the other hand the characteristic steady
state error for linear input systems shown in Figure 9 will
appear as long as the input signal keeps its slope, this kind of
response and error can be easily determined by using a
centrifuge test bench with increasing angular acceleration.

For all the models derived at this point it is important to
consider that forces on the proof-mass are inertial an according
to the mass m and stiffness k calculated for typical materials
and dimensions, the force needed to meet displacement of about
1 micron are in the order of nano-Newtons (1 x 107° N), this
force and therefore acceleration magnitudes are considered for
all the simulations in the present work.

V. CONCLUSION

These results suggest the necessity of air damping/resistance
or any other kind of damping mechanism to be present when
the traditional techniques and applications are implemented.
Air- and gravity-free environments, as could be considered for
some aerospace instrumentation system might require especial
analysis and development procedures as long as oscillatory
error could disable the operation principles in which
conventional capacitive CMOS-MEMS accelerometers are
based.
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Transient and steady response of an air-damped accelerometer system

to a step force input.
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. 9. Usual steady-state error in the response to a linear (ramp) input.
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