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Sensing system with an artificial neural network based on
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This paper shows a novel design of a gas sensor system based on artificial neural networks and floating-gate metal oxide semiconductor
transistors. Two types of circuits with floating-gate metal oxide semiconductor transistors of minimum dimensions were designed and
simulated by Simulink of Matlab; simulations and experimental measurements results were compared, obtaining good expectations. The
reason for using floating-gate metal oxide semiconductor is that artificial neural networks can also be implemented with these kinds of
devices, since artificial neural networks based on floating-gate metal oxide semiconductors are able to produce pseudo-Gaussian-functions.
These functions give a reliable option to determine gas concentration. A sensitive thin film can be deposited on the floating-gate metal
oxide semiconductor floating gate, which produces a charge variation due to the chemical reaction between the sensitive layer and the
gas species, modifying the threshold voltage thereby a correlation of drain current of thefloating-gate metal oxide semiconductor with gas
concentration can be obtained. Therefore, a generator circuit was implemented for the pseudo Gaussian signal with the floating-gate metal
oxide semiconductor. This system can be applied in environments with dangerous species such as CO , CO, methane, propane, among others.
Simulations demonstrated that the implemented proposal has a good performance as an alternative method for sensing gas concentrations,
compared with conventional sensors.
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1. Introduction

Gas sensors based on semiconductor oxides are very use-
ful nowadays; Their sensing properties allow establishing
the presence of either oxidizing or reducing species. Work-
ing principles of gas sensors based on thin films have been
widely reported in several papers and books [1-5]. Charge
releasing is due to the reducing process in the presence of
a reducing agent, and this can be quantified by a very com-
plex system. This is made with the aid of a sensitive layer,
usually semiconductor oxides thin films, like SnO and ZnO,
for instance. In this project, athin film sensor was deposited
by spray pyrolysis technique, and patterned by lift-off tech-
nique, then thin films with a thickness ranging from 200 nm
to 245 nm were used. Floating-gate metal oxide semiconduc-
tor (FGMOS) is very similar to metal oxide semiconductor
field-effect transistor (MOSFET), but they have an isolated
polysilicon layer between the conventional gate and the gate
area and are very versatile electronic devices; one of the FG-
MOS applications are artificial neural networks (ANN) since
they can be implemented within systems which emulate, for
example, the biological brain, so they give an output signal
in relation to one or several input signals. Hence, the ap-
proximation presented in this paper is directed to show the
operation of a gas detection system based on a FGMOS, as
a different alternative from those already reported, that take

advantage of the resistance variation of sensitive thin layers
made from semiconductor oxides.

1.1. Floating-gate MOS transistor (FGMOS)

Floating gate CMOS transistors (FGMOS) are a variant of a
conventional Complementary-MOS (CMOS) transistor. The
difference between FGMOS and CMOS transistors is that the
former has an isolated layer of polysilicon between the gate
and the channel area, which provides a capacitive effect that
will affect the threshold voltage of this device [6-11].

The experimental design explored in this paper places a
sensitive film in direct contact with the floating gate of a
FGMOS. Once in contact, a charge is produced as a result
of the chemical reaction that occurs when a gas is detected
by the thin layer. We can interpret this reaction as a varia-
tion of oxidizing or reducing agents [3,12]. It is important
to differentiate the mechanism that creates this charge, as
there are two very well-known methods for programming a
FGMOS: hot electron injection (HEI) and Fowler-Nordheim
tunneling (FN). The charge generation mechanism presented
herein does not require using any of these traditional electri-
cal methods, but the charge will be caused by the chemical
reaction mentioned above. Therefore, this process will be
called chemical injection due to the chemical nature of the
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FIGURE 1. Equivalent circuit of FGMOS voltages.

generated charge; however, the behavior is similar to FN tun-
neling. The equivalent circuit for this mechanism is shown
in Fig. 1, in this model the resistance represents the oxide
present with a very large value because it is an insulator so,

is the difference between the injector potential ( ) and
the floating gate potential ( ); and Eq. (1) denotes the
behavior of the floating gate voltage .

(1)

Where floating gate potential, injector coupling co-
efficient, control gate coupling coefficient, potential
applied to control gate, charge stored in the floating gate,
and total capacitance.

From (1) it can be seen that the voltage on de floating
gate (FG), , is a fraction of the voltage applied to the
control gates included in the FGMOS, where this fraction is
determined by the coupling coefficient, . Therefore, the
floating gates can be considered as weighted inputs in appli-
cations such as ANN. Coupling coefficients can be obtained
from the equivalent capacitive model (Fig. 2), where each ap-
plied potential is associated with their respective capacitance,
which in turn, determines both the floating gate voltage and
the drain current.

From the equivalent circuit, floating gate voltage can
be found by superposition, considering each of the voltages
applied to the structure, this is, , ; this can be denoted
by (2).

(2)

tot
(3)

tot
(4)

tot (5)

FIGURE 2. FGMOS capacitive equivalent model.

where capacitance between control and floating gates,
capacitance between the FN injector and FG, and chan-
nel capacitance.

So, Eqs. (1) through (5) briefly explain how FN tunnel-
ing can modulate the threshold voltage of a FGMOS, inject-
ing/extracting charge as a function of the magnitude of an
electric field between the injecting nodes. However, as in-
dicated in Eq. (1), any charge present in the floating gate
due to a mechanism different from that of an electrical nature
has an important role. Then, as mentioned above, the inter-
action between the sensitive thin layer and the sensing gas
species, results in a charge that can also have the same effect
as when either FN or HEI is used to program a FGMOS tran-
sistor. As this charge is a function of gas concentration, this
chemical injection mechanism can be used also to correlate
concentration with the electrical output, using the FGMOS as
a transducer.

1.2. Artificial neural networks

Usually, an artificial neural network (ANN) is a system used
for data processing because of the principles of operation
of these systems. ANNs have the ability to provide an out-
put signal depending on one or more input signals and these
have been extensively studied in numerous books and pa-
pers [9,12-17]. An ANN is a machine that is designed to
model how a particular task or function of interest will be
performed, emulating the human brain, whose main charac-
teristic is its adaptability to the surrounding environment [13-
15].

The introduction of parallel computing systems is nec-
essary whether we want to achieve real-time responses
[12,13,18]. These new systems coincide with the develop-
ment of a very large scale of integration (VLSI) [14,15,19],
especially after J.J. Hopfield [20], who introduced new points
of view in which neural networks combine the VLSI integra-
tion, enhancing hardware approximations of ANNs. In this
way and with the discovery of a Multilayer Perceptron, the
old objections to ANN because of the problems attributed
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to the simple perceptron, were solved. ANNs can be con-
structed with electronic components or should be simulated
by software in a digital computer [6,7,9,16,17,18,21, 22].

2. Development

First of all, the intention is to train off-line a neuro-fuzzy
network, from experimental data obtained with two conven-
tional sensors that were subjected to a controlled atmosphere
of different concentrations of CO . A Radial Basis Neural
Network, with clustering by fuzzy C-Means (FCM), was de-
veloped in .m files by Matlab. The architecture of this
ANN is a three-layered network, with one neuron at the in-
put, a second layer with four, because presents a good perfor-
mance, and a lower number of neurons is required, finally an
output layer with one neuron only. Next, after simulating the
neuro-fuzzy network, this will deliver the weights that must
be loaded to the floating gate of each FGMOS included in the
ANN that will be described below, in order to demonstrate
that this kind of network can be used to classify gas concen-

FIGURE 3. Training data of ANN, sensor 1.

FIGURE 4. Training data of ANN, sensor 2.

FIGURE 5. 3D Clusters of Sensor 1.

FIGURE 6. 3D Clusters of Sensor 2.

FIGURE 7. Membership functions of Sensor 1.

trations from an electrical output. Figure 3 shows the ANN
training by using sensor 1 with several CO concentrations
(20, 40, 80 and 130 ppm), because based on these results
Figs. 3 and 4, 3D clusters (Figs. 5 and 6) and fuzzy sets
(Figs. 7 and 8) were obtained. Figure 3 shows that for low
concentrations, around 20 ppm, the sensor 1 output signal
is about 0.1 V, for 40 ppm match about 0.22 V, for 80 ppm
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FIGURE 8. Membership functions of Sensor 2.

match 0.33 V and finally, for 130 ppm the output signal is
about 0.4 V. Note that in this case, the sensor’s output in-
creases as the gas concentration increases. On the other hand,
Fig. 4 shows measurements of the ANN using sensor 2 with
the same concentrations of CO . In this case, values obtained
are dissimilar compared to measurements delivered with sen-
sor 1, this is, an output voltage of 0.11V was obtained for a
gas concentration of 20 ppm, for 40 ppm match about 0.06 V,
for 80 ppm match 0.041 V and finally 0.04V for a gas con-
centration of 140 ppm. The weights of the ANN were com-
puted by a clustering process; therefore, their magnitude can
be finally defined; afterward, these weights (W) can be used
to train the neural network, by mean of injecting/extracting
charge of the FGMOS transistors, the generated 3D clusters
are shown in Fig. 5 and 6. As can be noticed, in Fig. 5 value
of W is rated around 10000, and in Fig. 6 value of W is rated
around 3000, due there are sensors 1 and 2 are different from
each other.

Once the weights are determined, the membership func-
tions of the neuro-fuzzy network can be computed. The cor-
responding fuzzy set membership functions of sensors 1 and
2 are shown in Fig. 7 and 8, respectively. As it can be no-
ticed, the membership functions never exceed the maximum
value of one, this means that if an item has a membership
function of 1, it will have a total membership to this cluster.
In Fig. 7, axis sensor lecture has a range from V to
2.5 V, whereas axis CO has a range of ppm to 300
ppm, furthermore, the axis of the membership function has
values from 0 to 1. In the case of Fig. 8, the axis sensor lec-
ture has a range from V to 3 V and axis CO has a range
of ppm to 300 ppm too.

Designed circuit

As is well known, an ANN has the ability to determine the
gas concentration for such a voltage response of the sensor.
After several tests carried out by Orcad software, the opti-
mal configuration of an ANN that can generate an adequate
Gaussian function was determined. This function can be car-

ried out by FGMOS inverters. For this reason, optimum di-
mensions and coupling capacitances of some transistors must
be calculated.

An array of N and P channel FGMOS transistors was de-
signed to implement the ANN; three inverters are intercon-
nected with each other. The design is shown in Fig. 9. As
it can be appreciated, P1 and N1 transistors form the first in-
verter, P2, N2, P3, and N3 transistors form a double inverter,
and P4 and N4 transistors work as an output stage. The input
signal or VG1 is connected to the first and the second inverter
inputs (P1, N1, P2 and N2 gates).

The first inverter output is joined to the gate of N4, the
second inverter output is connected to the third inverter input
(P3 and N3 gates), and the output of the third inverter is con-
nected to the P4 gate. P4 and N4 drains are connected to a
resistance of 100 M .

Figure 9 shows three inverters and a couple of transis-
tors as an output stage. The first inverter was programmed
to get an inversion with a low voltage input (input or VG1)
of around 0.4 V, next, the second and third inverters form a
double inverter, which was programmed to have an inversion
around 1.5 V. Finally; based on these couple inversions, the
last stage can deliver a Gaussian function (output). The draw-
back of this configuration is that there may be some spreading
due to both transition voltages, and also due to the handling
of a high number of variables as a result of the number of
transistors used.

To reduce these issues, an alternative circuit was pro-
posed, which can help in discarding the negative effects of
these variations. However, the result is the same to obtain a
pseudo-Gaussian response having a voltage ramp as an input
signal, despite the inclusion of an operational amplifier and
external resistances [9,17,21], as is shown in Fig. 10. This
alternative circuit has two inverters, similar to the first and

FIGURE 9. ANN Circuit designed for Gaussian function.

FIGURE 10. Alternative circuit using an operational amplifier as
output stage.
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the second inverters from Fig 9. In this case, input signal
or VG1 is connected to the first and second inverter inputs
(P5, N5, P6 and N6 gates), and the first and second inverter
outputs are connected to the input differential pair (M3 and
M4 gates) of the opamp, M7, and M8 drain are opamp out-
put. Within the simulation, the iterative method named gra-
dient descent was used to automatically adjust charge over
the floating gate of each FGMOS used in this configuration.
This method allows for good adjustment when the purpose
is to tune a great number of parameters when a particular
function is searched, as is the case for this alternative circuit.
The parameter adjustment is made based on the difference
between the output Gaussian function of the alternative cir-
cuit of Fig. 10. If there is a minimum difference or error,
the value obtained is raised to the cubic power and multiplied
by an adjustment factor. Due to the cubic exponent, the er-
ror sign is kept while the adjustment factor limits the new
adjusted value, then adding or subtracting the corresponding
value for each floating-gate.

Responses of the alternative circuit from Fig. 10 are
shown in Fig. 11(a) for charge adjusting, the desired func-
tion is very approximate to the searched function. the volt-
ages that should be loaded to the floating gate:

V, V, V and
V, 11(b) for desired function vs ap-

proximated function, 11(c) for adjusting error and 11(d) for
charge adjusting signal; it can be seen that after a relatively
few numbers of iterations (70), considering the adjustment of
the output signal shown in 11d, an error reduction is noticed
from iteration 10, so the accuracy of the system is calculated
to be V. Hence, after training the ANN with experi-

FIGURE 11. Whole process for parameters adjusting of alternative
circuit, a) Charge adjusting, b) Desired function vs. approximated
function, c) Error between desired function and approximated func-
tion and d) Charge adjusting signal.

FIGURE 12 . Pseudo Gaussian functions for the ANN designed.

mental data of gas concentrations, these voltages must be
present on the respective floating gates to be able to classify
correctly any gas concentration sensed for any concentration
measured.

Following this methodology, it is critical that the pseudo-
Gaussian function can be modified in height, width, and po-
sition, depending on how it is needed for data processing.
Therefore, it is demonstrated that functions can be approxi-
mated to the desired one with off-line training. As a result,
desired functions were obtained, and the ANN was trained as
it was described above. With this procedure, any ANN shall
be able to traduce a concentration value from a chemical in-
jection to an electrical reading. The Gaussian shapes that will
operate the ANN are shown in Fig. 12.

3. Comparisons between simulations and
measurements

Experimental measurements of conventional gas sensors
were compared against the response, of the ANN designed
with FGMOS transistors, with the aim of verifying whether
the developed ANN performance is as expected, Fig. 13 plots
the experimental CO measurements with a relative humid-
ity (RH) of 10%, versus the output values of the ANN. It
is worthwhile to mention that the axis plots 100 differ-
ent voltage outputs for known gas concentrations taken ran-
domly, just to prove that the trained ANN follows correctly
the measured values. It can be seen that very similar behav-
ior is obtained between the design need ANN and the ex-
perimental measurements. This means that it is an appropri-
ate approximation having very acceptable performance. This
plot demonstrates that this ANN has a suitable performance
because there are minimal differences.
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FIGURE 13. Real concentration vs approximate concentration us-
ing a silicon ANN based in FGMOS transistors, measurements
were made within the training range for CO , with a relative hu-
midity of 10 %.

FIGURE 14. Real concentration vs approximate concentration us-
ing a silicon ANN based in FGMOS transistors, measurements
were made within the training range for NO .

FIGURE 15. Real concentration vs approximate concentration us-
ing a silicon ANN based in silicon FGMOS transistors, measure-
ments were made within the training range for CO .

Another comparison was made with 110 measurements
of NO ; in this case, once again similar behaviors were no-
ticed with a minimal difference between the ANN and the
experimental measurement (Fig. 14).

Finally, a comparison using 120 measurements of CO
(no relative humidity present) vs ANN values was carried
out. Again, similar behaviors can be appreciated with min-
imal differences between ANN and the experimental mea-
surements. This can be seen in Fig. 15. Relative errors for
each case are between 6% and 11% respectively.

4. Conclusions

Sensors’ thin films give very low current values when both
desorption and adsorption phenomena are carried out in the
presence of oxidant and reducing species. The reducing ef-
fect releases a lot of surface charges, so these charges are
introduced into a floating gate of a MOS transistor by chem-
ical injection effect. The Perceptron ANN was chosen for
gas correlation to electrical output, because it is a very use-
ful technique for handling information. Such information is
provided by a gas sensing system. The ANN proposed can
be implemented in silicon using FGMOS transistors through
an array of several appropriate inverters. Therefore, a reli-
able pseudo-Gaussian function could be obtained, and in ad-
dition, can be implemented within the design of an ANN.
Two arrays of FGMOS inverters were proposed using FG-
MOS transistors, which led to the configuration of config-
urable pseudo-Gaussian functions. Also, Perceptron ANN
was developed, and its weights were calculated by a cluster-
ing process. These weights were used to train the neural net-
work, so they could be loaded by the injection/extraction on
the floating gate of FGMOS transistors for signal processing
circuit configuring. A neuro-fuzzy stage was proposed and
developed. The behavior of the Perceptron ANN was verified
through a comparison between experimental measurements
and the concentration value within the training range. Mea-
surements were carried out with pure NO , pure CO , and
CO with 10% of RH. The behavior was similar in the three
cases, which indicates that for different types of species, the
ANN has a very satisfactory behavior.
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