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Abstract— This work presents a supervised training strategy 

applied to a biorealistic Spiking Neural Network (SNN) with 

feedforward 2-2-1 architecture. This network uses Izhikevich 

neurons with regular-spiking behavior. The input layer, which 

has 2 nodes, generates temporal pulse trains that pass through 

synaptic conductances. These conductances transform voltages 

into currents. The receiving currents by 2 hidden-neurons also 

generate voltage pulses into synaptic conductances towards the 

output neuron. Each synaptic conductance has 2-parallel Alpha 

functions, whose weighting factors are found by the Efficient 

Artificial Bee Colony Algorithm (EABC Algorithm). This is a 

variant of the Artificial Bee Colony Algorithm (ABC Algorithm). 

The efficacy of the EABC algorithm in this SNN is shown solving 

the XOR paradigm.  

Keywords— Spiking neural network; Efficient artificial bee 

colony algorithm; Synapic conductance;  

I. Introduction  

The onset of the Artificial Neural Network (ANN) contains 
an extremely simple abstraction of biological neurons, but it 
does not prevent them to have the ability to learn, creating its 
own representation of the information (self-organization), fault 
tolerance, flexibility and response at real time.  

The ANNs have three basic components namely, the cell 
body, the axon and a set of dendrites with synapsis. The axon is 
able to send electrical signals or spikes, which are also called 
action potentials, through long nerve fibers; these electrical 
signals come from the cell body. The cell body integrates all 
the inputs in the manner an electrical capacitor works. The 
dendrites are the responsible for receiving the electrical signals 
among neurons. There are synapses in the inter-spaces between 
dendrites that behave as weighting factors and physiologically 
behave as a variable conductance. The SNN is considered the 
third generation of ANNs by modeling biological brain 
functions with temporal spike train events. Alan Lloyd 
Hodgkin and Andrew Huxley made different experiments with 
a squirt axon deducing the model that bears their name. At 
present, the Hodgkin-Huxley model is computationally 
unsuitable to realize simulations for large SNN. Alternatively, 
there exists the spiking Integrate-and-Fire model, but it 
deviates from real representations [1]. In this work, we use the 
Izhikevich model [2], which generates the temporal spiking 
patterns in the Hodgkin-Huxley model but with reduced 
numerical computation. The Izhikevich model can reproduce 
spiking behavior of known types of cortical neurons depending 
of four parameters; in particular for this work, we select those 

that generate regular spiking (RS). Even though, the SNN 
models in experimental neuroscience explain the Spike-Time 
Dependent Plasticity algorithm taking place in synapses as a 
process for adjusting their weighting factors, in this paper we 
use the EABC algorithm, which is suitable as a numerical 
program. The XOR non-linear classification problem is a 
vehicle to demonstrate that this metaheuristic approach might 
deal with training SNNs of any complexity, successfully. 

This paper is organized as follows. In Section II, this work 
reviews the manner SNNs have been trained. Section III 
introduces the concepts that support the existing metaheuristic 
algorithms as optimizers. The EABC algorithm is presented in 
brief in Section IV with its variant used for the XOR problem. 
In Section V, the synaptic conductance and the Izhikevich 
neuron models are shown. The architecture of the SNN used in 
this work is shown in Section VI. The training scheme of the 
SNN using the EABC algorithm with representative numerical 
results, are presented in Section VII. The Conclusion Section 
ends this paper. 

II. Training SNNs 

In order to have a suitable SNN solving a specific task in 
complex engineering problems, there should be a previous 
training stage supported with an optimizer that fixes its 
weighting factors. The optimizer is responsible for being 
efficient and fairly accurate. 

The classical optimizer in layered architectures of SNNs 
has numerical algorithms [3], [4]that find the weighting factors 
based on the principle of backpropagating the error. This 
training procedure observes the minimization of the Mean 
Square Error using gradient operators for temporal series of 
spikes. In other algorithms that take into account means, 
variances and correlations in spike patterns, training is also 
possible for SNNs [5]. Alternatively, SNNs were early trained 
with genetic and evolutionary algorithms that avoid using 
numerical derivatives with acceptable results for classification 
of nonlinear separable data [6].This optimization approach, 
which is inspired in darwinian principles, establishes strategies 
proper in metaheuristics, discarding and keeping candidate-
solutions, until it arrives to the optimal one. 

III. Metaheuristic Algorithms 

In general, the metaheuristic algorithms evaluate an 

objective function 𝑓(𝑥), with or without restrictions and 

whose minima might be found following the collective 



 

 

organization in living beings, for example by bees and ants 

when they forage or explore, respectively. However, more 

optimal-value search strategies are possible inspired in biology 

or nature. The use of memory for important states in the 

course of search is crucial. The metaheuristic algorithms 

define firstly a space of search, in which the mechanisms of 

Exploration and Exploitation should be addressed with good 

balance for providing acceptable algorithm performance [7]. 

These features are kept by the Artificial Bee Colony 

algorithm; also one of its extensions used here for the XOR 

problem. 

 

IV. ABC and EABC algorithms 

The ABC algorithm mimics the intelligent behavior of a 
group of bees when they forage (There are three kinds of bees: 
employee bee, onlooker bee and scout bee). The ABC 
algorithm presents an excellent performance. However, in this 
work we have used the Efficient ABC algorithm or EABC 
algorithm [8], to improve the behavior of the bees, whose main 
differences are evident below. 

A global optimization problem is solved when a parameter 
vector 𝑥 minimizes the objective function 𝑓(𝑥). 

𝑤ℎ𝑒𝑟𝑒: 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑖 , . . 𝑥𝑛−1, 𝑥𝑛 , ) ∈ ℝ𝑛 

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, … , 𝑛 

( 1 ) 

The function 𝑓(𝑥) is defined as the search space with 
dimension n. The variables 𝑥 are constrained by 𝑙𝑖 and 𝑢𝑖 that 
limit the domain. Initially, a colony with D elements is divided 
in two groups of bees, one half is the employee bees and the 
other half is the onlooker bees (N= colony size/2). Each source 
of food is a vector 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝐷} that represents a 
candidate solution, these are the parameter to be optimized and 
are initialized randomly as follows.  

𝑥𝑖,𝑗 = 𝑢𝑖,𝑗 + 𝜙𝑖,𝑗(𝑢𝑖,𝑗 −  𝑙𝑖,𝑗) ( 2 ) 

 Where: 𝑖 = 1,2, … 𝑁, 𝑗 = 1,2, … , 𝐷, 𝜙𝑖𝑗 is a random 

number between [0,1]. After initialization, the objective 
function is evaluated in each food source. 

We define the working phase of the algorithm associating the 
kind of bee that realizes it. 

 The employee bee phase is controlled by (3). 

𝑉𝑖,𝑗 = 𝑋𝑁1𝑗 + 𝜃𝑖,𝑗(𝑋𝑁2,𝑗 − 𝑋𝑖,𝑗) ( 3 ) 

Where: N1, N2 and 𝑖 are exclusive each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, 𝑗 ∈ {1,2,3, … , 𝐷} and are selected randomly. Θ𝑖𝑗  

is a random number between [-0.25, 0.25]. In the phase of 
employee bee, the ABC algorithm searches around its own 
food source; on the other hand, in the EABC algorithm the 
search is around other food source. Next, a greedy selection is 
applied between the new food source (𝑉𝑖𝑗) and the original 

food source (𝑋𝑖𝑗). 

 The onlooker bee phase is controlled by (4).  

𝑉𝑖,𝑗 = 𝑋𝑏𝑒𝑠𝑡,𝑗 + Φ𝑖,𝑗(𝑋𝑁1,𝑗 − 𝑥𝑁2,𝑗) ( 4 ) 

Where: N1, N2 and 𝑖 are exclusive each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, 𝑗 ∈ {1,2,3, … , 𝐷} and selected randomly. Φ𝑖𝑗  is a 

random number between [-0.5, 0.5].  The onlooker bee takes 
care of the exploitation. There is a difference with the ABC 
algorithm, where the onlooker bee selects a food source 
depending on the fitness that is defined by the employee bee 
and uses a probability process for selecting a food source. 

 The scout bee phase begins when the food source cannot 
be improved in a determined number of trials (L) or whose 
fitness is very less in comparison with the best food source 
found, so far. The scout bee proposes a new food source by Eq. 
(5). 

𝑈𝑖 = 𝑋𝑏𝑒𝑠𝑡,𝑗 +  θ𝑖(𝑋𝑁1 −  𝑥𝑁2) 

𝑋𝑖𝑗 = {
𝑋𝑖,𝑗 𝑖𝑓 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] > 𝑝

𝑈𝑖,𝑗 𝑖𝑓 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] < 𝑝
 

( 5 ) 

 Where: 𝑁1 and N2 are different each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, and selected randomly. θ𝑖 is a random number 
between [-0.25, 0.25] and 𝑝 is a constant between 0 and 1. 

The flow diagram of the EABC algorithm is shown below. 

 

The EABC performs twice the phase of employee bee. This 
fact enhances the exploitation mechanism. The onlooker bee 
phase performs the exploration mechanism. The scout bee 
phase searches the food sources.  

V. Synaptic conductance & Izhikevich models 

 There are three fundamental and biologically supported 
synaptic models, which can be taken into account for SNNs 
[1]. They approach stochastic properties due to noise in the 
nervous system. They model the way neurotransmitters pass 
through them, observing the change of value of the 
conductance. We choose for this work that one characterized 
by the Eq. 6, which is called Alpha function. 

𝑔𝑠𝑦𝑛(𝑡) = 𝐾𝑠𝑦𝑛𝑡𝑒
−𝑡

𝜏⁄  ( 6 ) 

 Where: 𝑔𝑠𝑦𝑛(𝑡) is the synaptic conductance, 𝜏 is a time 

constant and it controls the rise and decay times and, 𝐾𝑠𝑦𝑛 

establishes the peak conductance value. The Alpha function is 
valid from the time when a single spike appears. 



 

 
Fig. 1a shows one Alpha function that is stimulated with 
consecutive spikes, see Fig. 1b, coming from a single neuron, 
which is modeled by Izhikevich and its response in Fig. 1c. 

 

Fig. 1 a) Alpha function, b) Stimulating spikes and c) Synaptic 
current response 

 The second model used for the SNN in this work, is 
Izhikevich’s neuron model, whose analytical representation is 
given by Eq. (7), where a set of two coupled ordinary 
differential equations represent the membrane potential and the 

recovery current, respectively. 

 Where: 𝑉 is the membrane voltage, 𝑈 is the recovery 
current, C is the membrane capacitance, 𝑉𝑟𝑒𝑠𝑡  is the resting 
membrane potential and 𝑉𝑡ℎ is the instantaneous threshold 
potential. The constant 𝑎 is the recovery time and, the sign of 
𝑏, which is another constant, determines if  𝑈 is an amplifying 
or resonant variable.  

  The input current to the spiking neuron is: 𝐼𝑠𝑦𝑛 and denotes 

the sum of all input currents from neighboring neurons. This 
current is evaluated by Eq. (5). 

 

𝐼𝑠𝑦𝑛(𝑡) = ∑ 𝑔(𝑡)(𝐸 − 𝑉) ( 8 ) 

 

 Where: 𝑔(𝑡) is the conductance between the reference 
neuron and the neighboring neurons from which current comes. 
Finally, 𝐸 is a reference voltage. 

 

VI. Architecture of the SNN 

  Fig. 2 shows the proposed architecture of the SNN that 
solves the XOR paradigm, which is a two-input non-linear 
classification problem. In neuroscience, the solution is assisted 
by the spike-time dependent plasticity algorithm [1]. Likewise, 
this is a training algorithm in the field of intelligent systems, 
which should precede to determine the weighting factors in 
SNNs. In Fig. 2, the weighting factors are the set of labels 
W01, W02, and so on, which represent the set {𝐾𝑠𝑦𝑛} in Eq. 

(6).  The inputs in any SNN are analog and might be coded as 
continuous-time or discrete-time variables; likewise for the 
output. We have chosen to code the inputs in frequency with 
pulse generators, marked as F1 and F2. 

 The algorithms that are used for training neural networks 
work as optimizers finding the optimal set of weighting factors. 
For the SNN in Fig. 2, the optimizer is the EABC algorithm. 
Table I summarizes the description of the elements in Fig. 2. 

 

 

Fig. 2  Architecture of the SNN 

 

 

 



 

 
Table I 

Element Characteristic 

F1, Input 

F2, Input 

Pulse generator 

F1 => fo = 50 Hz for “0” 

F2 => f1 = 100 Hz for “1” 

Neuron 11 

Neuron 12 

Neuron 21 

Izhikevich´s model, Eq. (7) 

𝑽𝒓𝒆𝒔𝒕 -60mV 𝒂 0.03 

𝑽𝒕𝒉 -40mV 𝒃 -2 

𝑪 35mV c -50 

𝑲 0.7 d 100 

𝑻 1000ms 𝝉 0.2ms 
 

Synaptic Conductance 

Input layer 

Excitatory synapsis 

{W01, W03, W05, W07, 
W09, W11, W13, W15} 

Inhibitory synapsis 

{W02, W04, W06, W08, 
W10, W12, W14, W16} 

Hidden layer 

Excitatory synapsis 

{WH01, WH03, WH05, 
WH07} 

Inhibitory synapsis 

{WH02, WH04, WH06, 
WH08} 

Alpha function, Eq. (6) 

 

 

 

The weighting factors are arrayed in pairs; for example W01 
and W02, which are excitatory and inhibitory synapses, 
respectively. This was done for convergence purposes in the 
training process with the EABC algorithm. Otherwise, the 
numerical solutions would be outside the dynamic behavior 
established by the condition if (.) then (.) for the Eq. (7). 

VI. Training the SNN with EABC 

In this section, we show the outcome of the SNN in Fig. 2, 

that was trained with the EABC algorithm. The training 

patterns, representing the symbols “0” and “1” are coded as 

uniform pulses with 50 Hz and 100 Hz, respectively. 

Likewise, the universe of values where the XOR problem is 

valid is inside the interval [45 Hz, 105 Hz], which is read as an 

analog variable at the output. The EABC algorithm observes 

an objective function, which is evaluated with the Mean 

Square Error operator  or MSE given by Eq. (6). Where: 𝒚𝒊 is 

the output of the SNN in Hz, 𝒚𝒐𝒃 is the the target in Hz and 𝑵𝒓 

is the the number of experiments realized. 

The training process with EABC can find acceptable 

results when the MSE value is lower than 5 as can bee seen in 

graph MSE vs number of iterations, in Fig. 3. In each iteration, 

the best MSE is chosen from all the present food sources. 

𝑀𝑆𝐸 =
1

𝑁𝑟
∑(𝑦𝑖 − 𝑦𝑜𝑏)2

𝑁𝑟

𝑖=1

 ( 9 ) 

Table II presents the set of values used in the EABC algorithm. 

Table II 

Efficient ABC algorithm 

Parameter Value 

N 100 

L  100 

Max. 

Iteration 
1000 

𝒖𝒊 0 

𝒍𝒊 100 

 

 

Fig. 3 Progress of MSE with iterations 

 
Fig. 4 Result of test of the trained SNN 



 

 
Fig. 4 shows the result of the SNN after training, where the 
recognition of the symbols “0” and “1” have an extended 
definition of their domain. Therefore, the symbol “0” is defined 
in the interval [45 Hz, 75Hz] and the symbol “1” in the interval 
[76 Hz, 105 Hz]. Color keys: red for “0” and blue for “1”. 

Finally, Table III presents the values of the weighting factors 
found by the EABC algorithm that solves satisfactorily the 
XOR paradigm. We should mention that this set of values 
belongs to a set a possible solutions, due to the nature of the 
learning method namely, metaheuristic one. 

Table III 

W01 55.878 W09 44.004 WH01 46.695 

W02 28.809 W10 12.885 WH02 40.143 

W03 40.492 W11 31.403 WH03 86.579 

W04 23.493 W12 3.166 WH04 31.266 

W05 70.871 W13 29.423 WH05 6.560 

W06 54.694 W14 22.096 WH06 2.046 

W07 88.665 W15 9.995 WH07 20.613 

W08 11.335 W16 85.331 WH08 100 
 

 

VII. Conclusion 

This work presented experimental results of training a 
small SNN for the two-input XOR classification problem, 
where the inputs are analog values represented as pulse 
frequency, in Hz. The key point in this work is choosing a pair 
of synapses: one excitatory and one inhibitory in parallel, 
where both represent a connection. This kind of connectivity 
allows numerical convergence when the EABC algorithm 
searches by metaheuristics the weighting factors of the SNN, 
which by itself is dificult to train due to its temporal nature 
according to the biorealistic model by Izhikevich. 

Further research in the area of optimization with other 
metaheuristic algorithms deserves attention as long as new 
opportunities of using spiking neural networks become 
evident. 
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