
2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)
Mexico City, Mexico. September 5-7, 2018

978-1-5386-7033-0/18/$31.00 ©2018 IEEE

 Experimental Spiking Neural Network: Solving the XOR

Paradigm with Metaheuristics

J. Enríquez-Gaytán1, F. Gómez-Castañeda1, J.A. Moreno-Cadenas1, L.M. Flores-Nava1.

 Electrical Engineering Department, Cinvestav-IPN, Mexico City, Mexico
 phone (52) 55 5747 3800 Ext. 6261

 e-mail: {jenriquezg, fgomez, jmoreno, lmflores}@cinvestav.mx

Abstract— This work presents a supervised training strategy

applied to a biorealistic Spiking Neural Network (SNN) with

feedforward 2-2-1 architecture. This network uses Izhikevich

neurons with regular-spiking behavior. The input layer, which

has 2 nodes, generates temporal pulse trains that pass through

synaptic conductances. These conductances transform voltages

into currents. The receiving currents by 2 hidden-neurons also

generate voltage pulses into synaptic conductances towards the

output neuron. Each synaptic conductance has 2-parallel Alpha

functions, whose weighting factors are found by the Efficient

Artificial Bee Colony Algorithm (EABC Algorithm). This is a

variant of the Artificial Bee Colony Algorithm (ABC Algorithm).

The efficacy of the EABC algorithm in this SNN is shown solving

the XOR paradigm.

Keywords— Spiking neural network; Efficient artificial bee

colony algorithm; Synapic conductance;

I. Introduction

The onset of the Artificial Neural Network (ANN) contains
an extremely simple abstraction of biological neurons, but it
does not prevent them to have the ability to learn, creating its
own representation of the information (self-organization), fault
tolerance, flexibility and response at real time.

The ANNs have three basic components namely, the cell
body, the axon and a set of dendrites with synapsis. The axon is
able to send electrical signals or spikes, which are also called
action potentials, through long nerve fibers; these electrical
signals come from the cell body. The cell body integrates all
the inputs in the manner an electrical capacitor works. The
dendrites are the responsible for receiving the electrical signals
among neurons. There are synapses in the inter-spaces between
dendrites that behave as weighting factors and physiologically
behave as a variable conductance. The SNN is considered the
third generation of ANNs by modeling biological brain
functions with temporal spike train events. Alan Lloyd
Hodgkin and Andrew Huxley made different experiments with
a squirt axon deducing the model that bears their name. At
present, the Hodgkin-Huxley model is computationally
unsuitable to realize simulations for large SNN. Alternatively,
there exists the spiking Integrate-and-Fire model, but it
deviates from real representations [1]. In this work, we use the
Izhikevich model [2], which generates the temporal spiking
patterns in the Hodgkin-Huxley model but with reduced
numerical computation. The Izhikevich model can reproduce
spiking behavior of known types of cortical neurons depending
of four parameters; in particular for this work, we select those

that generate regular spiking (RS). Even though, the SNN
models in experimental neuroscience explain the Spike-Time
Dependent Plasticity algorithm taking place in synapses as a
process for adjusting their weighting factors, in this paper we
use the EABC algorithm, which is suitable as a numerical
program. The XOR non-linear classification problem is a
vehicle to demonstrate that this metaheuristic approach might
deal with training SNNs of any complexity, successfully.

This paper is organized as follows. In Section II, this work
reviews the manner SNNs have been trained. Section III
introduces the concepts that support the existing metaheuristic
algorithms as optimizers. The EABC algorithm is presented in
brief in Section IV with its variant used for the XOR problem.
In Section V, the synaptic conductance and the Izhikevich
neuron models are shown. The architecture of the SNN used in
this work is shown in Section VI. The training scheme of the
SNN using the EABC algorithm with representative numerical
results, are presented in Section VII. The Conclusion Section
ends this paper.

II. Training SNNs

In order to have a suitable SNN solving a specific task in
complex engineering problems, there should be a previous
training stage supported with an optimizer that fixes its
weighting factors. The optimizer is responsible for being
efficient and fairly accurate.

The classical optimizer in layered architectures of SNNs
has numerical algorithms [3], [4]that find the weighting factors
based on the principle of backpropagating the error. This
training procedure observes the minimization of the Mean
Square Error using gradient operators for temporal series of
spikes. In other algorithms that take into account means,
variances and correlations in spike patterns, training is also
possible for SNNs [5]. Alternatively, SNNs were early trained
with genetic and evolutionary algorithms that avoid using
numerical derivatives with acceptable results for classification
of nonlinear separable data [6].This optimization approach,
which is inspired in darwinian principles, establishes strategies
proper in metaheuristics, discarding and keeping candidate-
solutions, until it arrives to the optimal one.

III. Metaheuristic Algorithms

In general, the metaheuristic algorithms evaluate an

objective function 𝑓(𝑥), with or without restrictions and

whose minima might be found following the collective

organization in living beings, for example by bees and ants

when they forage or explore, respectively. However, more

optimal-value search strategies are possible inspired in biology

or nature. The use of memory for important states in the

course of search is crucial. The metaheuristic algorithms

define firstly a space of search, in which the mechanisms of

Exploration and Exploitation should be addressed with good

balance for providing acceptable algorithm performance [7].

These features are kept by the Artificial Bee Colony

algorithm; also one of its extensions used here for the XOR

problem.

IV. ABC and EABC algorithms

The ABC algorithm mimics the intelligent behavior of a
group of bees when they forage (There are three kinds of bees:
employee bee, onlooker bee and scout bee). The ABC
algorithm presents an excellent performance. However, in this
work we have used the Efficient ABC algorithm or EABC
algorithm [8], to improve the behavior of the bees, whose main
differences are evident below.

A global optimization problem is solved when a parameter
vector 𝑥 minimizes the objective function 𝑓(𝑥).

𝑤ℎ𝑒𝑟𝑒: 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑖 , . . 𝑥𝑛−1, 𝑥𝑛 ,) ∈ ℝ𝑛

𝑙𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖, 𝑖 = 1, … , 𝑛

(1)

The function 𝑓(𝑥) is defined as the search space with
dimension n. The variables 𝑥 are constrained by 𝑙𝑖 and 𝑢𝑖 that
limit the domain. Initially, a colony with D elements is divided
in two groups of bees, one half is the employee bees and the
other half is the onlooker bees (N= colony size/2). Each source
of food is a vector 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝐷} that represents a
candidate solution, these are the parameter to be optimized and
are initialized randomly as follows.

𝑥𝑖,𝑗 = 𝑢𝑖,𝑗 + 𝜙𝑖,𝑗(𝑢𝑖,𝑗 − 𝑙𝑖,𝑗) (2)

 Where: 𝑖 = 1,2, … 𝑁, 𝑗 = 1,2, … , 𝐷, 𝜙𝑖𝑗 is a random

number between [0,1]. After initialization, the objective
function is evaluated in each food source.

We define the working phase of the algorithm associating the
kind of bee that realizes it.

 The employee bee phase is controlled by (3).

𝑉𝑖,𝑗 = 𝑋𝑁1𝑗 + 𝜃𝑖,𝑗(𝑋𝑁2,𝑗 − 𝑋𝑖,𝑗) (3)

Where: N1, N2 and 𝑖 are exclusive each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, 𝑗 ∈ {1,2,3, … , 𝐷} and are selected randomly. Θ𝑖𝑗

is a random number between [-0.25, 0.25]. In the phase of
employee bee, the ABC algorithm searches around its own
food source; on the other hand, in the EABC algorithm the
search is around other food source. Next, a greedy selection is
applied between the new food source (𝑉𝑖𝑗) and the original

food source (𝑋𝑖𝑗).

 The onlooker bee phase is controlled by (4).

𝑉𝑖,𝑗 = 𝑋𝑏𝑒𝑠𝑡,𝑗 + Φ𝑖,𝑗(𝑋𝑁1,𝑗 − 𝑥𝑁2,𝑗) (4)

Where: N1, N2 and 𝑖 are exclusive each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, 𝑗 ∈ {1,2,3, … , 𝐷} and selected randomly. Φ𝑖𝑗 is a

random number between [-0.5, 0.5]. The onlooker bee takes
care of the exploitation. There is a difference with the ABC
algorithm, where the onlooker bee selects a food source
depending on the fitness that is defined by the employee bee
and uses a probability process for selecting a food source.

 The scout bee phase begins when the food source cannot
be improved in a determined number of trials (L) or whose
fitness is very less in comparison with the best food source
found, so far. The scout bee proposes a new food source by Eq.
(5).

𝑈𝑖 = 𝑋𝑏𝑒𝑠𝑡,𝑗 + θ𝑖(𝑋𝑁1 − 𝑥𝑁2)

𝑋𝑖𝑗 = {
𝑋𝑖,𝑗 𝑖𝑓 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] > 𝑝

𝑈𝑖,𝑗 𝑖𝑓 𝑅𝑎𝑛𝑑𝑜𝑚[0,1] < 𝑝

(5)

 Where: 𝑁1 and N2 are different each other; with 𝑁1, 𝑁2 ∈
{1,2,3, … , 𝑁}, and selected randomly. θ𝑖 is a random number
between [-0.25, 0.25] and 𝑝 is a constant between 0 and 1.

The flow diagram of the EABC algorithm is shown below.

The EABC performs twice the phase of employee bee. This
fact enhances the exploitation mechanism. The onlooker bee
phase performs the exploration mechanism. The scout bee
phase searches the food sources.

V. Synaptic conductance & Izhikevich models

 There are three fundamental and biologically supported
synaptic models, which can be taken into account for SNNs
[1]. They approach stochastic properties due to noise in the
nervous system. They model the way neurotransmitters pass
through them, observing the change of value of the
conductance. We choose for this work that one characterized
by the Eq. 6, which is called Alpha function.

𝑔𝑠𝑦𝑛(𝑡) = 𝐾𝑠𝑦𝑛𝑡𝑒
−𝑡

𝜏⁄ (6)

 Where: 𝑔𝑠𝑦𝑛(𝑡) is the synaptic conductance, 𝜏 is a time

constant and it controls the rise and decay times and, 𝐾𝑠𝑦𝑛

establishes the peak conductance value. The Alpha function is
valid from the time when a single spike appears.

Fig. 1a shows one Alpha function that is stimulated with
consecutive spikes, see Fig. 1b, coming from a single neuron,
which is modeled by Izhikevich and its response in Fig. 1c.

Fig. 1 a) Alpha function, b) Stimulating spikes and c) Synaptic
current response

 The second model used for the SNN in this work, is
Izhikevich’s neuron model, whose analytical representation is
given by Eq. (7), where a set of two coupled ordinary
differential equations represent the membrane potential and the

recovery current, respectively.

 Where: 𝑉 is the membrane voltage, 𝑈 is the recovery
current, C is the membrane capacitance, 𝑉𝑟𝑒𝑠𝑡 is the resting
membrane potential and 𝑉𝑡ℎ is the instantaneous threshold
potential. The constant 𝑎 is the recovery time and, the sign of
𝑏, which is another constant, determines if 𝑈 is an amplifying
or resonant variable.

 The input current to the spiking neuron is: 𝐼𝑠𝑦𝑛 and denotes

the sum of all input currents from neighboring neurons. This
current is evaluated by Eq. (5).

𝐼𝑠𝑦𝑛(𝑡) = ∑ 𝑔(𝑡)(𝐸 − 𝑉) (8)

 Where: 𝑔(𝑡) is the conductance between the reference
neuron and the neighboring neurons from which current comes.
Finally, 𝐸 is a reference voltage.

VI. Architecture of the SNN

 Fig. 2 shows the proposed architecture of the SNN that
solves the XOR paradigm, which is a two-input non-linear
classification problem. In neuroscience, the solution is assisted
by the spike-time dependent plasticity algorithm [1]. Likewise,
this is a training algorithm in the field of intelligent systems,
which should precede to determine the weighting factors in
SNNs. In Fig. 2, the weighting factors are the set of labels
W01, W02, and so on, which represent the set {𝐾𝑠𝑦𝑛} in Eq.

(6). The inputs in any SNN are analog and might be coded as
continuous-time or discrete-time variables; likewise for the
output. We have chosen to code the inputs in frequency with
pulse generators, marked as F1 and F2.

 The algorithms that are used for training neural networks
work as optimizers finding the optimal set of weighting factors.
For the SNN in Fig. 2, the optimizer is the EABC algorithm.
Table I summarizes the description of the elements in Fig. 2.

Fig. 2 Architecture of the SNN

Table I

Element Characteristic

F1, Input

F2, Input

Pulse generator

F1 => fo = 50 Hz for “0”

F2 => f1 = 100 Hz for “1”

Neuron 11

Neuron 12

Neuron 21

Izhikevich´s model, Eq. (7)

𝑽𝒓𝒆𝒔𝒕 -60mV 𝒂 0.03

𝑽𝒕𝒉 -40mV 𝒃 -2

𝑪 35mV c -50

𝑲 0.7 d 100

𝑻 1000ms 𝝉 0.2ms

Synaptic Conductance

Input layer

Excitatory synapsis

{W01, W03, W05, W07,
W09, W11, W13, W15}

Inhibitory synapsis

{W02, W04, W06, W08,
W10, W12, W14, W16}

Hidden layer

Excitatory synapsis

{WH01, WH03, WH05,
WH07}

Inhibitory synapsis

{WH02, WH04, WH06,
WH08}

Alpha function, Eq. (6)

The weighting factors are arrayed in pairs; for example W01
and W02, which are excitatory and inhibitory synapses,
respectively. This was done for convergence purposes in the
training process with the EABC algorithm. Otherwise, the
numerical solutions would be outside the dynamic behavior
established by the condition if (.) then (.) for the Eq. (7).

VI. Training the SNN with EABC

In this section, we show the outcome of the SNN in Fig. 2,

that was trained with the EABC algorithm. The training

patterns, representing the symbols “0” and “1” are coded as

uniform pulses with 50 Hz and 100 Hz, respectively.

Likewise, the universe of values where the XOR problem is

valid is inside the interval [45 Hz, 105 Hz], which is read as an

analog variable at the output. The EABC algorithm observes

an objective function, which is evaluated with the Mean

Square Error operator or MSE given by Eq. (6). Where: 𝒚𝒊 is

the output of the SNN in Hz, 𝒚𝒐𝒃 is the the target in Hz and 𝑵𝒓

is the the number of experiments realized.

The training process with EABC can find acceptable

results when the MSE value is lower than 5 as can bee seen in

graph MSE vs number of iterations, in Fig. 3. In each iteration,

the best MSE is chosen from all the present food sources.

𝑀𝑆𝐸 =
1

𝑁𝑟
∑(𝑦𝑖 − 𝑦𝑜𝑏)2

𝑁𝑟

𝑖=1

 (9)

Table II presents the set of values used in the EABC algorithm.

Table II

Efficient ABC algorithm

Parameter Value

N 100

L 100

Max.

Iteration
1000

𝒖𝒊 0

𝒍𝒊 100

Fig. 3 Progress of MSE with iterations

Fig. 4 Result of test of the trained SNN

Fig. 4 shows the result of the SNN after training, where the
recognition of the symbols “0” and “1” have an extended
definition of their domain. Therefore, the symbol “0” is defined
in the interval [45 Hz, 75Hz] and the symbol “1” in the interval
[76 Hz, 105 Hz]. Color keys: red for “0” and blue for “1”.

Finally, Table III presents the values of the weighting factors
found by the EABC algorithm that solves satisfactorily the
XOR paradigm. We should mention that this set of values
belongs to a set a possible solutions, due to the nature of the
learning method namely, metaheuristic one.

Table III

W01 55.878 W09 44.004 WH01 46.695

W02 28.809 W10 12.885 WH02 40.143

W03 40.492 W11 31.403 WH03 86.579

W04 23.493 W12 3.166 WH04 31.266

W05 70.871 W13 29.423 WH05 6.560

W06 54.694 W14 22.096 WH06 2.046

W07 88.665 W15 9.995 WH07 20.613

W08 11.335 W16 85.331 WH08 100

VII. Conclusion

This work presented experimental results of training a
small SNN for the two-input XOR classification problem,
where the inputs are analog values represented as pulse
frequency, in Hz. The key point in this work is choosing a pair
of synapses: one excitatory and one inhibitory in parallel,
where both represent a connection. This kind of connectivity
allows numerical convergence when the EABC algorithm
searches by metaheuristics the weighting factors of the SNN,
which by itself is dificult to train due to its temporal nature
according to the biorealistic model by Izhikevich.

Further research in the area of optimization with other
metaheuristic algorithms deserves attention as long as new
opportunities of using spiking neural networks become
evident.

REFERENCES

[1] P. Dayan and L. F. Abbott, Theoretical Neuroscience:

Computational and Mathematical Modeling of Neural

Systems, MIT Press, 2005.

[2] E. M. Izhikevich, Dynamical Systems in

Neuroscience: The Geometry of Excitability and

Bursting, Cambridge, Massachusetts: The MIT Press,

2007.

[3] S. M. Bohte, J. N. Kok and H. Poutré, "Error-

backpropagation in temporally encoded networks of

spiking neurons," Neurocomputing, vol. 48, no. Issues

1–4, pp. 17-37, 2002.

[4] X. Xie, H. Qu, G. Liu, M. Zhang and J. Kurths, "An

Efficient Supervised Training Algorithm for

Multilayer Spiking Neural Networks," PLoS One;

11(4): e0150329. doi: 10.1371/journal.pone.0150329,

2016.

[5] P. Rowcliffe and J. Feng, "Training Spiking Neuronal

Networks with Applications in Engineering Tasks,"

IEEE TRANSACTIONS ON NEURAL NETWORKS,

vol. 19, no. 9, pp. 1626-1640, 2008.

[6] A. Belatreche, L. P. Maguire and M. McGinnity,

"Advances in Design and Application of Spiking

Neural Networks," Soft Computing, vol. 11, no. Issue

3, p. 239–248, 2007.

[7] P. Siarry, Metaheuristics, Switzerland: Springer

International Publishing, 2016.

[8] P. Subhash and T. Rajesh, "An Efficient Artificial Bee

Colony Algorithm and Analog Circuit Design

Environment," WSEAS Transactions on Circuits and

Systems, vol. 16, pp. 108-122, 2017.

