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a b s t r a c t 

It is reported a continuous-time neural network in CMOS that uses memristors. These nanodevices are 

used to achieve some analog functions such as constant current sourcing, decaying term emulation, and 

resistive connection; all of them representing parameters of the neural network. The expected dynamics 

of this silicon circuit with these functional memristors is demonstrated via SPICE simulations based on 

0.5 μm, n-well CMOS technology. The neural circuit is operative by finding the optimal solution of small- 

size combinatorial optimization problems, namely: “Assignment” and “Transportation”. It was chosen fast 

switching titanium dioxide memristors, which are modeled with nonlinear window functions and tunnel- 

ing effect with the TEAM paradigm. This analog network belongs to an early recurrent model, which is 

electrically redesigned to take into account memristive arrays but keeping its original convergence prop- 

erties. The behavioral and electrical analysis is done via Simulink-SPICE simulation. The outcome VLSI 

functional blocks combine both current and voltage to represent the variables in the recurrent model. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The nonlinear and dynamic i – v characteristics of the nanoscale

emory component or memristor were reported by HP Labs [1] .

his electrical component was described earlier in the theoretical

ork by Chua (see first reference in [1] ). The memristor repre-

ents a modern focus of attention with various topic avenues: from

roposing its technology with different materials [2,3] to introduc-

ng it in parallel models of computing approaches with bases in

omplex systems [4,5] . Furthermore, it is envisaged that the elec-

ronic design activity has potential possibilities of creating emerg-

ng analog and digital systems [6] , where the memristor might

e introduced as an innovative element. In the academic context,

here are electronic designs oriented to demonstrate analog sys-

ems based on the Hopfield network configuration, where the tra-

itional weighting resistive elements can be replaced by memris-

ors. This replacement can be implemented in standard electronic

echnology. In this direction, works in [7,8] deal with two demon-

trative prototypes: a 4-bit ADC converter and an associative mem-

ry. Taking in particular the Hopfield model as an optimizer, it can
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e analyzed according to the manner its energy or cost function is

tated. The efficiency to solve linear and nonlinear programming

roblems [9] is an alternate issue in the study of the Hopfield

aradigm. Another recurrent neural network that works as an op-

imizer and becomes attractive for VLSI integration was presented

y Wang [10] . This neural model operates with single-valued resis-

ors with a lateral connectivity pattern among neurons. 

In this paper, we solve two combinatorial optimization prob-

ems with the electrical recurrent network, working as an opti-

izer, that was used by Wang, where memristors are utilized to

epresent analog parameters, both static (permanent in time) and

ynamic (decaying in time). 

We show standard continuous-time CMOS circuits in analog

eurons: unit-gain current amplifiers for computing integrals of

ggregated currents and inverters for sigmoid functions. The con-

ection between neurons is made with two-memristor arrays that

bserve the sense of the current. Simulations of the electrical and

nalytical response of the memristive network done both in Spice

nd Simulink, provide numerical reference comparisons; they were

early similar. 

The main topic in the electrical design in this work was con-

erned with the change of value of the resistance in working mem-

istors, i.e. when a current flows through. The objective of using

emristors was achieved in three manners: 1) Keeping the Off-

tate resistance, i.e. a constant-value reference current was im-

lemented by setting a particular analog voltage at the memris-
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Memristive states before (left, R ON < R M < R OFF ) and after (right, R M = R ON or 

R M = R OFF ) due to flow of current. This simple procedure sets the values R ON or R OFF 

in memristors used in the recursive neural network in this work. 
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tors terminals, 2) Combining both Off and On-state resistances in a

group of memristors, i.e. a dynamic decaying current source with a

predetermined peak value was obtained and, 3) Selecting dynami-

cally one of two memristors, i.e. a constant-value bidirectional re-

sistor was emulated. 

2. The memristor and its model for circuit design 

At present, the memristor is modeled with high-performance

software, reproducing its nonlinear and frequency dependence

when continuous-time signals are applied to its two terminals. The

suitable electrical relation in circuit design is i – v ; for the memris-

tor, it comes from observing the Constitutive Relation [11] ; it is

reproduced in (1) , where φ is the magnetic flux and q is the elec-

trical charge. 

f M 

( φ, q ) = 0 (1)

Using (1) the memristance or R ( q ) is defined in (2) . Therefore,

the i – v function of the memristor is defined in (3) . 

R ( q ) = 

d f M 

( q ) 

dq 
(2)

v = R ( q ) i (3)

The main feature that is drawn from (3) is shown when i = 0 at

time t 0 , then the memristor stores charge and memorizes the last

memristance value, e.g. R = R ( q at t 0 ). A generalization of (2) and

(3) supports circuit-theoretic properties of the memristor, which

are expressed by (4) and (5) . Where, x = (x 1 , x 2 , . . . x n ) represents

a state-variable vector. 

v = R ( x , i ) (4)

dx 

dt 
= f ( x , i ) (5)

Both (4) and (5) have minimal representation by reducing x to a

scalar-variable x ; the common case is when x measures the relative

position of a frontier between two adjacent and variable resistive

regions in the fabricated nanomaterial. In principle, a low resistiv-

ity region that contains moving oxygen vacancies can displace into

the other region of high resistivity due to the flow of current in

the memristor. Whether w is the width of the region with oxygen

vacancies and D is the width of the memristor, the state-variable

is given by x = w/D . 

Most memristor models approach the i – v function observing a

nonlinear ion drift behavior [12] and tunneling [13] as dominant

conduction mechanisms. They might provide numerical means of

the charge-kinetics identification in nanometric materials. How-

ever, computation effective features are preferred in memristive

circuit design; the TEAM model itself is suitable [14] . In TEAM, x

is introduced by modeling dx/dt . This expression is given in (6) re-

placing w / D by its complement i.e. x = 1 − w/D or x = d/D . Where,

d = D − w, is the effective width of the tunneling gap. 

dx 

dt 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

k of f 

(
i ( t ) 

i of f 

− 1 

)αof f 

f of f ( x ) , 0 < i of f < i (6a) 

0 , i on < i < i of f (6b) 

k on 

(
i ( t ) 

i on 
− 1 

)αon 

f on ( x ) , i < i on < 0 (6c) 

In (6), k off, k on , αoff, αon , i on and i off are parameters that fit the

model with experimental data. Finally, the i – v relation is nonlinear

in x according to (7) . 

v ( t ) = R ON e ( 
λ/ x of f −x on ) ( x −x on ) i ( t ) (7)

R ON and R OFF are the resistances at x = x on and x = x off, respec-

tively, and λ = ln ( R / R ) . The TEAM model was introduced in
OF F ON 
he circuit design community and oriented to fast digital systems.

hese characteristics are useful in the recurrent neural network as

an be appreciated further. 

. Memristance for design 

The static and dynamic states of the memristor with fast

witching features, support the neural network design in this work.

he static states are either R ON or R OFF whereas the dynamic

tates are characterized by dx / dt as a changing resistance. R ON and

 OFF are available when the current does not change the direction;

herefore, the signal voltage polarity at the memristor terminals

hould be kept during the analog process. In Fig. 1 , the initial

esistive states are within the interval R ON < R M 

< R OFF (on the

eft) and the ending states after flowing the current I m 

through

he memristor (on the right); where R M 

is the resistance value

f the memristor. For the changing resistance case, when dx / dt is

ot zero, we take advantage proposing a parallel-series configura-

ion that is suitable to emulate a transient current, whose initial

r peak value I MS can represent a parameter of the neural network

amely, λc i, j exp ( −t/τ ) which is introduced later. Fig. 2 presents a

onceptual diagram of this configuration, where the analog differ-

ntial potential (V + )–(V −) starts to change from zero to V M 

at time

 START . V M 

is an analog voltage that should be found to reach the

nitial or peak current I MS . Before this transient occurs, the series

emristors are in the On-state resistance and the parallel ones in

he Off-state resistance. The current through the series memristors

auses a change in their individual resistance towards the value

 OFF , decreasing I m 

down to I MF . Although there are reported an-

lytical expressions that would approximate the transient current

 m 

, see for example [15] , we use the TEAM model to observe that

 m 

decays from I MS toward I MF . This transient characteristic replaces

hat one originally described by a discharging capacitor through a

esistor in the electrical neural model [10] . Using Ohm ́s Law and

onsidering that there are S M 

series memristors and P M 

parallel

emristors in Fig. 2 , the initial (or Peak) and final currents I MS and

 MF are given by (8) and (9) , respectively. 

 MS = 

V M (
R ON S M 

+ 

R OFF 

P M 

) (8)
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Fig. 2. Transient current in a memristive array. Using S M series memristors con- 

nected with S P parallel memristors, whose initial memristance is set at R ON and 

R OFF , respectively, can emulate a decaying current I m when a voltage step is applied 

at time T START . The peak current I MS is established according to (8) . The final current 

I MF approaches the value in (9) . 
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Fig. 3. Neuron N i for vector array. The input analog signals: v 1 , v 2 , …, v n are multi- 

plied by weighting factors: W i, 1 , W i, 2 , …, W i,n , where they are real numbers. Neuron 

N i performs an addition, a temporal integration and a nonlinear transformation. 
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 MF = 

V M (
R OF F S M 

+ 

R OFF 

P M 

) (9) 

Changing the number of series or parallel memristors and fix-

ng the voltage difference (V + )–(V-) , we can find V M 

that satisfies

he condition I m 

= I MS . Finally, as a design constraint, we should ob-

erve that (V + )–(V-) is limited to an interval. 

. Recurrent neural network 

The supporting theory refers to an analog neural network

odel with n neurons, where the reference neuron N i recurrently

onnects the other ones through weighting factors W i, j and whose

ynamics ends up solving linear programming problems. The net-

ork configuration of this model is built with neurons arranged

s a vector, where W i, j with i, j = 1, 2,…n can be represented by

 symmetric matrix W as shown in Fig. 3 . There exists a self-

onnection, whose weighting factor is W i, i . Using the interme-

iate variable z i , the state variable u i relates with v j according

o (10) and (11) , with i = 1, 2,…. Therefore, neuron N i integrates

u i = z i dt , where u i is the argument of a sigmoid function as de-

oted in (12) to provide v i . β is a gain factor. 

 i = 

d u i 

dt 
(10) 

 i = v 1 W i, 1 + v 2 W i, 2 + ... v j W i, j + ... v n W i,n (11)

 i = 

1 (
1 + e −βu i 

) (12) 

In particular, for a linear programming problem, whose state-

ent is 

Minimize: f ( v ) = c T v 
Subject to: A v = b

The matrix W in the recurrent neural network is defined by

13) [16] , where η is a positive scalar parameter. 

 = −ηA 

T A (13) 
The entries of A are the coefficients of the linear equations that

stablish the problem. Additionally, c and b are column vectors of

arameters; v is a column vector of the decision variable. The con-

traint equation might include slack variables where { b , c and v } ε
 

n . 

In this case, u i and v i are the entries of the column vectors u

nd v respectively, and they are related according to the state Eq.

14) . At the steady state, i.e. d u / dt = 0, v presents the solution. 

du 

dt 
= W v + ηA 

T b − cξ ( 0 ) e 
−t 
τ (14) 

In (14) , the column vector c decays in time due to

(0) exp( −t/τ ) ; where, ξ (0) and τ are the initial (or peak) value

nd the time constant, respectively. 

Wang [16] demonstrated the stability and convergence to near

ptimal solutions of the recurrent neural network described by the

et of equations in (14) , which are suitable for circuit implementa-

ion in VLSI design. Wang also established a methodology of elec-

rical networks with similar convergence properties in the case of

ombinatorial optimization problems [10] , leading to a matrix of n

y n neurons i.e. organized in n rows by n columns. The new net-

ork configuration uses neuron, as shown in Fig. 4 , in a matrix

rray, where the factor Q is equal to –1 if k = i or l = j , otherwise

 is zero. This factor establishes connections with neurons in the

ame column and row of the reference neuron N i,j . There are only

ateral inhibitory connections, all of them having the same value

W 0 , also there exists a self-connection whose weighting factor is

2 W 0 . 

The individual state equations that formulate the “Assignment”

roblem [17] are given by (15) and (16) , where k and l are columns

nd rows counters, respectively. 

d u i, j 

dt 
= −η

n ∑ 

k =1 

v i,k − η
n ∑ 

l=1 

v l, j + 2 η − λc i, j e 
−t 
τ (15) 

 i, j = 

1 (
1 + e −βu i, j 

) (16) 

In (15) , the term – η that multiplies the summations is the in-

ibitory weighting factor in the lateral connections; 2 η represents

 threshold; c i, j belongs to the set of costs in a problem, and de-

ays in time due to exp( −t/τ ) and λ which is a constant. Accord-

ng to our experimental results, it is convenient to replace (16) by
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Fig. 4. Neuron N i,j for matrix array. The input analog signals: v 1, 1 , v 1, 2 , …, v n,n are 

multiplied by weighting factors: Q W 0 , Q W 0 , …, Q W 0 , where, Q ε {0, −1} obeys to 

a lateral connection rule and W 0 is a real positive number. Neuron N i,j performs an 

addition, a temporal integration and a nonlinear transformation. 

Fig. 5. Electrical configuration of neuron N i,j for matrix array. This system has in- 

terconnection resistors R 0 /P, where P ε {0, 1} obeys to a lateral connection rule. The 

current amplifier adds the arriving currents at the input node with constant volt- 

age Vref to create Iz i,j . It is copied and integrated by capacitor C INT to produce Vu i,j . 

Finally, Vu i,j is transformed by the inverting sigmoid function to provide the output 

voltage Vv i,j . 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Electrical and model parameters. 

I θ i, j 2 η Parameter, constant 

Ic i, j λc i, j e 
−t 
τ Parameter, decaying 
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s  
the inverting sigmoid, which is defined in Eq. (17) . 

v i, j = − 1 (
1 + e −βu i, j 

) (17)

We remark that c i, j and 2 η are the entries of new matrices: C

and θ, respectively. c i, j and 2 η electrically use memristors to en-

code “Assignment” and “Transportation” problems, treated below

as demonstrative applications. 

5. Electrical configuration of the neuron 

In this section, we show the analog components that build

the recurrent neural network, which solves the “Assignment” and

“Transportation” problems. In Fig. 5 are shown the processing com-

ponents in terms of voltage and current variables for the reference

neuron N i,j shown in Fig. 4 . The weighting factors W 0 are taken

as conductances proportional to 1/ R 0 , where the set of resistors

whose individual value R provides a current that is summed along
0 
ith Iset, I θ i, j and Ic i, j to form the current Iz i, j . This analog vari-

ble is entered to the current amplifier with unitary gain, which

utputs a replica of Iz i, j to the capacitor C INT . This capacitor works

s an integrator of Iz i, j in order to obtain the voltage Vu i, j . The in-

erting sigmoid function reads Vu i, j to produce Vv i, j . The current

mplifier also copies the voltage Vref to its input. 

Below is the analytical description of this electrical system that

eads to a differential equation that is equivalent to (15) , consid-

ring that the existing connections are those that fulfill the condi-

ion: P is equal to 1 if k = j or l = i (otherwise, P = 0 and, there is

o connection). 

Applying Kirchhoffś Current Law at the input of the current am-

lifier, Iz i, j is expressed as 

 z i, j = 

1 

R 0 

n ∑ 

l,k =1 

(
V v l,k − V re f 

)
+ I c i, j − I θi, j + Iset (18)

 z i, j = 

1 

R 0 

n ∑ 

l,k =1 

V v l,k −
2 nV re f 

R 0 

+ I c i, j − I θi, j + Iset (19)

The term −( 2 nV re f ) / R 0 acts as a bias voltage. Its effect can be

educed to zero by setting Iset to 

set = 

2 nV re f 

R 0 

(20)

Thus, (19) is simplified to 

 z i, j = 

1 

R 0 

n ∑ 

l,k =1 

V v l,k + I c i, j − I θi, j (21)

We should note that the summation in (21) contains a self-

onnection, whose value is 2/ R 0 . 

The next expression after (21) is (22) . Where, C INT is the capac-

tor that integrates Iz i, j to produce Vu i, j . 

dV u i, j 

dt 
= 

1 

C INT 

{ 

1 

R 0 

n ∑ 

k =1 

V v i,k + 

1 

R 0 

n ∑ 

l=1 

V v l, j + I c i, j − I θi, j 

} 

(22)

(22) is equivalent to (15) but with converse signs on the terms

f the right hand side to be taken into consideration with the in-

erting sigmoid function. Table 1 relates electrical and model pa-

ameters. 

The analog input currents I θ i, j and Ic i, j are the entries of the

atrices θ and C , respectively that represent the combinatorial op-

imization problems in this work. 

. Analog CMOS circuits 

We have chosen a low cost standard 0.5 μm, n-well, CMOS tech-

ology to design the analog neural network circuits, that were sim-

lated as 3-by-3 matrices of neurons. The power supply VDD is 5 V.

he BSIM3v3 MOSFET model electrical parameters of this CMOS

echnology are provided by ON-Semiconductor to run on the IC-

anometer Suite by Mentor. 

The CMOS circuits that form the Current Amplifier and the In-

erting Sigmoid Function are shown in Figs. 6 and 7 a, respectively.

he W/L ratio of the transistors is shown as μm/μm (this nomen-

lature applies for all the electrical diagrams). This Current Ampli-

er is useful for signal processing applications in current-mode de-

igns [18] . It works following the translinear principle of the loop
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Fig. 6. Current amplifier. This is a current mode analog amplifier designed for uni- 

tary gain, where the input current Iz i,j on the left, is provided as a copy on the 

right. 
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Table 2 

TEAM parameters used in simulations. 

Parameters Values 

dt 1 × 10 -9 s 

R ON 1 × 10 3 ohm 

R OFF 500 × 0 3 ohm 

i off 50 × 10 −12 A 

i on −50 × 10 −12 A 

W C 107 × 10 −12 m 

a on 0 m 

a off 3 × 10 −9 m 

k on −1 × 10 −8 m/s 

k off 1 × 10 −8 m/s 

αon 1 

αoff 1 

x on 0 m 

x off 3 × 10 −9 m 

t  

d  

o  

i  

c

 

2  

R  

m  

e  

n  

t  

r  

t  

o  

t  

T  

t  

o

 

c  

r  

f  
ormed by transistors M1, M2, M3 and M4 transferring Vref to the

nput. It has unitary gain. Vref = VDD/2 was chosen. Fig. 7 a is a

ush–pull analog amplifier, whose gain and DC transfer function

re set by the transistors size, approximating the inverting non-

inear sigmoid function in (17) and shifting to the first quadrant.

ig. 7 b presents Vv i, j versus Vu i, j of the push pull amplifier, where

he gain at Vv i, j = VDD/2 is moderate. 

. Memristive components 

The TEAM model was implemented with Verilog-A instruc-

ions [19] . They were run on the IC-Nanometer Suite by Men-

or. Table 2 presents the values of the parameters used in the

imulations of the recurrent neural networks. These values cor-

espond to the memristors used whose technology is oriented to

ast digital electronics [20] . Using the values in Table 2 and the

etup in Fig. 8 a, the obtained simulated response is shown in

ig. 8 b, where the frequency of the sinusoidal signal covers the

ange: 1 MHz < f < 3 MHz. Fig. 8 c shows applied voltage V m 

, mem-

istive current I m 

, effective width d and memristance R (from
M 

Fig. 7. a. Inverting sigmoid function. This is a push–pull CMOS amplifier that a
op to down) for 1 MHz, 2 MHz and 3 MHz. In Table 2 , doing

t = 1 × 10 −9 s allows saving computation time. We simulated lots

f networks setting their individual integrating capacitors C INT at

nitial conditions of combinatorial cases of either 0 V or 5 V and

hoosing the best solution. 

In Fig. 5 , the set of resistors, whose number by neuron is

 ( n − 1 ) + 2 , is composed by memristors with a resistive value:

 0 = R OF F namely, in the Off-state resistance. This condition de-

ands that the sense of the flowing current never changes, what-

ver its magnitude is; however, we note that the sense of the sig-

al current flow in any memristor might change. Fig. 9 depicts

he actual memristive circuit that emulates a constant R OFF for the

eference connection between Vv l, k and Vref . There, two memris-

ors are selected by a “comparator”, which is formed by a chain

f 4 digital inverters, whose threshold is Vref by design. Memris-

ors MEMR1 and MEMR2 work always in the Off-state resistance.

hey are selected alternatively when Vv l, k > Vref and Vv l, k < Vref , by

he transmission gates TG1 and TG2, respectively. TG1 and TG2 are

perated by opposite logic levels due to Va and Vb. 

Both Iset and I θ i, j provide constant currents and have similar

ircuit configuration, which also uses memristors in the Off-state

esistance. Figs. 10 and 11 show the implementation of the circuits

or Iset /2 and I θ i, j respectively, where the difference VDD – Vref
pproximates (17) . b. Simulation in DC of the inverting sigmoid function. 
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Fig. 8. a. Setup for simulating the i – v characteristic of the memristor. b. Simulation of the i – v characteristic of the memristor with frequency as parameter. c. Simulation as 

function of time. Top to down graphs: Applied sinusoidal voltage V m , Current I m , Effective width d , Memristance R m . 
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Fig. 9. Circuit for emulating the resistive connection R 0 = R OFF between neurons. 

Upper diagram: The chain of 4 digital inverters acts as a comparator to the ana- 

log voltage Vv l,k . The logic threshold of each inverter is set to Vref by design. Lower 

diagram: Switched paths between Vv l,k and Vref due to transmission gates TG1 and 

TG2 that avoid change of sense of current in MEMR1 and MEMR2 and keep them 

at R OFF . The digital voltages Va and Vb for controlling TG1 and TG2 come from the 

comparator (chain of 4 inverters). 

t  

e  

o  

c  

Fig. 10. Current source Iset /2. It is implemented using 5 parallel memristors in the 

R OFF state in series with a p-channel MOS transistor. The analog voltage Vg 1 sets the 

current. 

Fig. 11. Current source I θ i,j . It is implemented using 5 parallel memristors in the 

R OFF state in series with an n-channel MOS transistor. The analog voltage Vg 2 sets 

the current. 

F

p

akes part of the design. This memristive strategy reduces active

lectronics to a minimal and gets a high output resistance. Based

n the electrical simulation, Vg 1 and Vg 2 are determined for spe-

ific DC currents of Iset /2 and I θ i, j , which are shown in Fig. 12 a
ig. 12. a. Simulation in DC of Iset/ 2 versus Vg 1. The useful linear characteristic is in 1.7 V < Vg 1 < 3.85 V for 1.0 μA < Iset /2 < 23.0 μA, where the circuit in Fig. 10 works 

roperly. b. Simulation in DC of I θ i,j versus Vg 2. The useful linear characteristic is in 1.0 V < Vg 2 < 3.70 V for 1.0 μA < I θ i,j < 23.0 μA, where the circuit in Fig. 11 works properly. 
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Fig. 13. a. Simulation in DC of Iset /2 versus Vref , with Vg 1 as parameter. It is chosen Vg 1 = 2.5 V for Iset /2 = 15 μA and Vref = 2.5 V. These values are used in the neural 

network. b. Simulation in DC of I θ i,j versus Vref , with Vg 2 as parameter. Vg 2 should be chosen in the interval 0.8 V < Vg 2 < 3.5 V to be inside the interval 0 μA < I θ i,j < 20 μA. 

Vref = 2.5 V. 

Fig. 14. Current source Ic i,j . It is implemented using 5 parallel memristors in the 

R OFF state in series with 5 series memristors in the R ON state and a p-channel MOS 

transistor. The analog voltage Vg 3 sets the peak current. 
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e

Fig. 15. a. Simulation in DC of Ic i,j versus Vg3 . The peak current Ic i,j can be set in the in

the circuit in Fig. 14 works properly. b. Simulation of Ic i,j . The peak current is set with Vg

Vg 3 = 2.76 V, 3.0 V, 3.24 V, 3.48 V and 3.74 V, respectively. 
nd b, respectively. Fig. 13 a and b provides evidence that both

urrent sources have high output resistance at the working volt-

ge Vref = 2.5 V. Fig. 14 refers to the circuit configuration of Ic i, j ,

hich emulates a decaying current and replaces λc i, j exp ( −t/τ ) in

he model presented by Wang. Although there is a series transistor,

nd (9) predicts a lower final current I MF , its decaying characteris-

ic is still suitable. The analog voltage Vg 3 sets the initial ampli-

ude of the current or the peak current; this value is determined

sing (8) , where V M 

= V M 

( Vg 3) and S M 

= 5, P M 

= 5. The I–V DC char-

cteristic is drawn in Fig. 15 a. Whether the values 2 μA, 4 μA,

μA and 10 μA are chosen as the peak currents, the correspond-

ng values of Vg 3 are 3.74 V, 3.48 V, 3.24 V, 3.00 V and 2.76 V. The

ransient outcome, with these peak currents is shown in Fig. 15 b.

n the circuits that approach the currents Iset /2, I θ i, j and Ic i, j the

ource terminal of the series transistor sets the voltage across the

orresponding memristive array following to Vg 1, Vg 2 and Vg 3, re-

pectively. At this point, Fig. 10 deserves noting that it is designed

or Iset /2 due to functionality reason namely, the series p-MOS

ransistor works properly. The actual current source Iset is imple-

ented by two parallel circuits providing a current equals to Iset /2
ach. 

terval 1.0 μA < Ic i,j < 20 μA corresponding to the interval 1.5 V < Vg 3 < 3.9 V, where 

 3. From Fig. 15a, the values: Ic i,j = 10 μA , 8 μA , 6 μA , 4 μA , and 2 μA are set using 
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Table 3-A 

Numerical costs and electrical currents. 

Neuron ( i,j ) Netwk1 Netwk2 Netwk3 Netwk1 Netwk2 Netwk3 

C i,j C i,j C i,j I Ci,j I Ci,j I Ci,j 

(1, 1) 7 1 8 7.77 1.11 8.88 

(1, 2) 6 7 6 6.66 7.77 6.66 

(1, 3) 8 3 1 8.88 3.33 1.11 

(2, 1) 9 6 4 9.99 6.66 4.44 

(2, 2) 4 5 3 4.44 5.55 3.33 

(2, 3) 3 4 5 3.33 4.44 5.55 

(3, 1) 5 4 5 5.55 4.44 5.55 

(3, 2) 8 6 2 8.88 6.66 2.22 

(3, 3) 6 9 9 6.66 9.99 9.99 

Table 3-B 

Analog and numerical solutions. 

Neuron ( i,j ) Analog solution V vi,j Numerical solution 

Netwk1 Netwk2 Netwk3 Netwk1 Netwk2 Netwk3 

(1, 1) 0.58382 4.22076 0.03629 0 1 0 

(1, 2) 3.97953 0.01529 0.01471 1 0 0 

(1, 3) 0.31686 0.60430 4.74946 0 0 1 

(2, 1) 0.02195 0.01533 4.04663 0 0 1 

(2, 2) 0.71387 0.79085 0.81807 0 0 0 

(2, 3) 4.17154 4.07552 0.01708 1 1 0 

(3, 1) 4.30346 0.59964 0.81689 1 0 0 

(3, 2) 0.19650 4.08336 4.02668 0 1 1 

(3, 3) 0.32928 0.22205 0.01484 0 0 0 
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Fig. 16. a. Simulation of Netwk1. b. Simulation of Netwk2. c. Simulation of Netwk3. 

Table 4-A 

Numerical costs, and offer and demand values. 

Neuron ( i,j ) Netwk4 Netwk5 Netwk6 

C i,j a i b j C i,j a i b j C i,j a i b j 

(1, 1) 7 40 25 7 70 50 8 40 30 

(1, 2) 6 40 35 4 70 80 6 40 80 

(1, 3) 8 40 60 15 70 45 1 40 10 

(2, 1) 9 50 25 1 90 50 4 60 30 

(2, 2) 4 50 35 19 90 80 3 60 80 

(2, 3) 3 50 60 2 90 45 5 60 10 

(3, 1) 5 30 25 3 15 50 5 20 30 

(3, 2) 8 30 35 12 15 80 2 20 80 

(3, 3) 6 30 60 10 15 45 9 20 10 
. Analog solution of the “Assignment” problem 

In this section, we present the solution of “Assignment” prob-

ems using the memristive recurrent neural network. Considering

ig. 5 for a 3-by-3 system of neurons, Eq. (20) evaluated for

ref = VDD/2 = 2.5 V, R 0 = R OF F = 500 × 10 3 Ohm, which is imple-

ented with the circuit configuration of Fig. 10 , leads to a value

f Iset = 30 μA. The value of the integrating capacitor C INT is 2.3 pF,

hich is proposed as 1.0 pF by design in parallel with 1.3 pF due to

he gate capacitances of the inverting sigmoid function. The value

f the threshold current source I θ i, j is constant and the same for

ll neurons, which is established as I θ i, j = 20 μA. In Table 3-A are

hown the numerical costs and their respective electrical currents

c i, j in μA of 3 “Assignment” problems identified as Netwk1,

etwk2 and Netwk3. Table 3-B shows their analog solution in

olts along with the expected numerical solution. Fig. 16 a, b and c

resents the electrical traces Vv i, j of Netwk1, Netwk2 and Netwk3

ased on the SPICE simulations. Comparing the analog solution

ith the numerical solution, we observe that both are equal,

onsidering that if Vv i, j is nearly 5 V or 0 V, it is read as “1” or

0”, respectively. Appendix A presents an algebraic analysis of the

Assignment” problem for completeness. 

. Analog solution of the “Transportation” problem 

In this section, we present the solution of “Transportation”

roblems using the memristive recurrent neural network. Con-

idering Fig. 5 for a 3-by-3 system of neurons, Eq. (20) evaluated

or Vref = VDD/2 = 2.5 V, R 0 = R OF F = 500 × 10 3 Ohm, which is

mplemented with the circuit configuration of Fig. 10 , leads to a

alue of Iset = 30 μA. The value of the integrating capacitor C INT is

.3 pF, which is proposed as 1.0 pF by design in parallel with 1.3 pF

ue to the gate capacitances of the inverting sigmoid function. In

able 4-A are shown the numerical costs, and the offer and de-

and values of 3 “transportation” problems, identified as Netwk4,

etwk5 and Netwk6. Table 4-B presents the current in μA of the

orresponding values of Table 4-A . I ̄c i, j , I ̄a i , and I ̄b j are calculated
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Table 4-B 

Electrical currents. 

Neuron ( i,j ) Netwk4 Netwk5 Netwk6 

I ̄c i, j I ̄a i I ̄b j I θ I ̄c i, j I ̄a i I ̄b j I θ I ̄c i, j I ̄a i I ̄b j I θ

(1, 1) 7.77 6.66 4.16 10.82 3.684 7.77 5.55 13.32 8.88 5.00 3.75 8.750 

(1, 2) 6.66 6.66 5.83 12.49 2.105 7.77 8.88 16.65 6.66 5.00 10.0 15.00 

(1, 3) 8.88 6.66 10.0 16.66 7.894 7.77 5.00 12.77 1.11 5.00 1.25 6.250 

(2, 1) 9.99 8.33 4.16 12.49 0.526 10.0 5.55 15.55 4.44 7.50 3.75 11.25 

(2, 2) 4.44 8.33 5.83 14.16 10.00 10.0 8.88 18.88 3.33 7.50 10.0 17.50 

(2, 3) 3.33 8.33 10.0 18.33 1.052 10.0 5.00 15.00 5.55 7.50 1.25 8.750 

(3, 1) 5.55 5.00 4.16 9.16 1.578 1.66 5.55 7.210 5.55 2.50 3.75 6.250 

(3, 2) 8.88 5.00 5.83 10.83 6.315 1.66 8.88 10.54 2.22 2.50 10.0 12.50 

(3, 3) 6.66 5.00 10.0 15.00 5.263 1.66 5.00 6.660 9.99 2.50 1.25 3.750 

Table 4-C 

Analog solution. 

Neuron ( i,j ) Netwk4 Netwk5 Netwk6 

v i,j (V) v i,j (V) v i,j (V) 

(1, 1) 0.40308 0.01490 0.45477 

(1, 2) 2.65081 3.85953 1.29839 

(1, 3) 0.17217 0.01459 0.64134 

(2, 1) 0.01454 2.50312 1.18499 

(2, 2) 0.01454 0.01464 2.51945 

(2, 3) 4.08842 2.56797 0.01481 

(3, 1) 1.58085 0.30123 0.12369 

(3, 2) 0.15685 0.47318 1.10332 

(3, 3) 0.66717 0.01460 0.01473 
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as: I ̄c i, j = ( c i,j /max( c i,j ))(10 μA), I ̄a i = ( a i /max( a i , b j ))(10 μA) and,

I ̄b j = ( b j /max( a i , b j ))(10 μA). 

I θ comes from adding I ̄a i and I ̄b j . Table 4-C is the analog solu-

tion v i, j in volts from simulations. In Table 4-D v i, j is calculated by

v i, j = ( v i, j in Volts/(5 volts))(max( a i , b j )). The offer a i and demand

b j values in Table 4-D are computed as a i = � v i, j with j = 1,2,3

and b j = � v i, j with i = 1,2,3. Additionally, the total cost of Netw4,

Netwk5 and Netwk6 are calculated as � ( c i, j )( v i, j ) with i, j = 1,2,3.

In Table 4-E are shown the values from numerical simulations

with Simulink, where v i, j = ( v i, j in Simulink)(5 volts)(max( a i , b j )).

Fig. 17 a, b and c presents the electrical traces Vv i, j of Netwk4,

Netwk5, and Netwk6 respectively, based on SPICE simulations.

The total costs by the memristive neural networks in Table 4-

D are lower than those by the numerical solution in Table 4-E .

Appendix B presents an algebraic analysis of the “Transportation”

problem for completeness. 

10. Comment on performance 

The starting random state value of the memristors deserves a

comment on the performance of the whole system. Setting ev-

ery memristor at R or R should be done before the ana-
ON OFF 

Table 4-D 

Analog solution. 

Neuron ( i,j ) Netwk4 Netwk5 

v i,j a i b j v i,j 

(1, 1) 4.8370 38.712 23.981 0.2682 

(1, 2) 31.809 38.712 33.866 69.471 

(1, 3) 2.0660 38.712 59.133 0.2626 

(2, 1) 0.1745 49.410 23.981 45.056 

(2, 2) 0.1745 49.410 33.866 0.2635 

(2, 3) 49.061 49.410 59.133 45.223 

(3, 1) 18.970 28.858 23.981 5.4221 

(3, 2) 1.8822 28.858 33.866 8.5172 

(3, 3) 8.0060 28.858 59.133 0.2628 

Total cost = 548.641 Total cost
og computing cycle begins. Naming T SET as the setting period,

 SET should be long enough to change in parallel some mem-

istors from R ON to R OFF and the other ones conversely. From

imulations, the smallest value of the computing cycle time is

 PROCESS = 8.0 μs. Also, from simulations T SET > 650 ns. Defining

 = 100% × (T PROCESS − T SET )/(T PROCESS ) as a Performance Figure of

erit and using the above numbers, we get P = 91%. Therefore, this

nalog system supports an acceptable performance. 

1. Conclusions 

This paper was motivated by the availability of advanced mem-

istor models for circuit design, in particular the TEAM model. The

tudied neural network was originally modeled by its author us-

ng one-value resistive components and decaying currents, leading

o linear resistors and discharging capacitors for its implementa-

ion; in contrast, we have proposed memristive/CMOS circuit con-

gurations that behave according to the analog parameters of the

eural network, solving in continuous-time mode the optimization

roblems. For this goal, we have chosen electrical parameter val-

es in the TEAM model that belong to fast switching memristors;

heir dynamic characteristics are complementary of those used in

resent analog designs, e.g. slow memristive Hopfield networks.

e observe that our electrical system represents an innovative sys-

em, where new configuration circuits were introduced. 

This work contributes in the VLSI design area by proposing the

se of memristors working in one of two memristances R OFF or R ON .

his system sustains 3 features, namely: 1 ) It does not require any

rogramming electronics but flowing current in the direction in-

icated in Fig. 1 , where the proper polarity in the used memris-

or is chosen. 2 ) Using R OFF simplifies the implementation of the

urrent sources: Iset and I θ i,j namely, reduces transistor count and

voids external analog bias voltages. Observing the model by Dr.

ang given by (22) , where the value of the resistive interconnec-

ions R 0 is constant, it can be chosen as R OFF . 3 ) The parallel ( R OFF )–

eries ( R ) configuration presented in Fig. 14 is an original idea
ON 

Netwk6 

a i b j v i,j a j b j 

70.002 50.746 7.2763 38.312 28.215 

70.002 78.752 20.774 38.312 78.738 

70.002 46.748 10.261 38.312 10.734 

91.543 50.746 18.959 59.508 28.215 

91.543 78.252 40.311 59.508 78.738 

91.543 46.748 0.2370 59.508 10.734 

14.202 50.546 1.9790 19.867 28.215 

14.202 78.252 17.653 19.867 78.738 

14.202 46.748 0.2357 19.867 10.734 

 = 547.314 Total cost = 438.397 
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Table 4-E 

Numerical solution. 

Neuron Netwk4 Netwk5 Netwk6 

( i,j ) v i,j a i b j v i,j a i b j v i,j a i b j 

(1, 1) 3.7917 39.946 24.938 0.0 0 0 0 69.930 49.945 0.1541 39.767 29.773 

(1, 2) 34.899 39.946 34.971 69.930 69.930 79.919 29.763 39.767 79.803 

(1, 3) 1.2559 39.346 59.986 0.0 0 0 0 69.930 44.995 9.8503 39.767 10.158 

(2, 1) 0.0 0 0 0 49.976 24.938 44.993 89.991 49.945 29.465 59.947 29.773 

(2, 2) 0.0718 49.976 34.971 0.0 0 0 0 89.991 79.919 30.327 59.947 79.803 

(2, 3) 49.904 49.976 59.986 44.995 89.991 44.995 0.1541 59.947 10.158 

(3, 1) 21.146 29.973 24.938 4.9497 14.939 49.945 0.1541 20.020 29.773 

(3, 2) 0.0 0 0 0 29.973 34.971 9.9899 14.939 79.919 19.712 20.020 79.803 

(3, 3) 8.8268 29.973 59.986 0.0 0 0 0 14.939 44.995 0.1541 20.020 10.158 

Total cost = 554.671 Total cost = 549.428 Total cost = 440.862 

Fig. 17. a. Simulation of Netwk4. b. Simulation of Netwk5. c. Simulation of Netwk6. 
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f replacing a large capacitive and resistive element to represent

he decaying term: λc i, j exp ( −t/τ ) in (15) , which is essential to set

he parameters of the problem. Alternative ways of interconnecting

emristors different from the crossbar architecture, which leads to

ellular arrays, support the physical implementation of the analog

ystem in this paper. 

Planning in robotics would be a problem for solving by this re-

urrent neural network. A larger memristive system based on the

odel by Wang, working as optimizer, is possible by redesigning

he CMOS circuits already exposed. 

ppendix A 

The “Assignment” problem is a linear programming problem,

hose description can be associated with the statement: 

“There is the need to assign available ‘resources’ to ‘agents’ to

erform a set of tasks at minimal cost”. 

This problem is expressed as follows. 

inimize z = 

n ∑ 

i =1 

n ∑ 

j=1 

c i j v i j (A.1) 

ub ject to 

n ∑ 

j=1 

v i j = 1 , i = 1 , . . . , n (A.2)

m 

 

i =1 

v i j = 1 , j = 1 , . . . , n 

 i j ∈ { 0 , 1 } , i, j = 1 , . . . , n ; (A.3) 

here, c ij represents one element of the cost and v ij is the decision

ariable. 

In particular, we obtain the solution to the “Assignment” prob-

em for a 3-by-3 system, using the recurrent neural network by

ang [10] . The mathematical formulation of the supporting ana-

og neural network is 

d u i j ( t ) 

dt 
= −η

n ∑ 

k =1 

v ik ( t ) − η
n ∑ 

l=1 

v l j ( t ) + 2 η − λc i j e 
− t 

τ (A.4) 

 i j = g 
(
u i j ( t ) 

)
(A.5) 

here, η and λ are constants. g (.) is a sigmoid function, providing

he solution is in the range [0, 1]. 

Eqs. (A .1) –(A .3) for the case of a 3-by-3 system are now repre-

ented by: 

inimize z = 

3 ∑ 

i =1 

3 ∑ 

j=1 

c i j v i j (A.6) 

ub ject to 

3 ∑ 

v i j = 1 , i = 1 , . . . , 3 (A.7)
j=1 
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3 ∑ 

i =1 

v i j = 1 , j = 1 , . . . , 3 

v i j ∈ [ 0 , 1 ] , i = 1 , . . . , 3 ; j = 1 , . . . , 3 (A.8)

Eqs. (A .6) –(A .9) get a matrix form as follows 

Minimize z = c T v (A.9)

Sub ject to A v = b (A.10)

Eq. (A.10) can be developed for the 3-by-3 system, to have 

Minimize z = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v 11 

v 12 

v 13 

v 21 

v 22 

v 23 

v 31 

v 32 

v 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.11)

Eq. (A.11) uses matrix A and vector b as follows, also for the

3-by-3 system. 

A = 

[
I I I 

B 1 B 2 B 3 

]
(A.12)

A = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 1 1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.13)

b = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

1 

1 

1 

1 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.14)

Finally, the set of restrictions are expressed as 

A v = b (A.15)

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 1 1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v 11 

v 12 

v 13 

v 21 

v 22 

v 23 

v 31 

v 32 

v 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

1 

1 

1 

1 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.16)

v 11 + v 21 + v 31 = 1 (A.17)

v 12 + v 22 + v 32 = 1 (A.18)

v 13 + v 23 + v 33 = 1 (A.19)

v 11 + v 12 + v 13 = 1 (A.20)

v 21 + v 22 + v 23 = 1 (A.21)

v 31 + v 32 + v 33 = 1 (A.22)

The set of differential Eq. (A.4) has its matrix form given as 

du ( t ) = −η
(
W v − θ

)
− λc e −

t 
τ (A.23)
dt 
The matrix of weights W is defined as 

 = A 

T A (A.24)

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 1 1 1 0 0 1 0 0 

1 2 1 0 1 0 0 1 0 

1 1 2 0 0 1 0 0 1 

1 0 0 2 1 1 1 0 0 

0 1 0 1 2 1 0 1 0 

0 0 1 1 1 2 0 0 1 

1 0 0 1 0 0 2 1 1 

0 1 0 0 1 0 1 2 1 

0 0 1 0 0 1 1 1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.25)

The threshold matrix θ is given as 

= A 

T b (A.26)

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 0 

0 1 0 1 0 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 0 1 0 

1 0 0 0 0 1 

0 1 0 0 0 1 

0 0 1 0 0 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 

1 

1 

1 

1 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.27)

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

2 

2 

2 

2 

2 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.28)

Replacing matrices W y θ in the below matrix form, where λ is

efined as: 1/ c max , we get for the 3-by-3 system, the below alge-

raic analysis: 

du ( t ) 

dt 
= −η

(
W v − θ

)
− λc e −

t 
τ (A.29)

du ( t ) 

dt 
= −η

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 1 1 1 0 0 1 0 0 

1 2 1 0 1 0 0 1 0 

1 1 2 0 0 1 0 0 1 

1 0 0 2 1 1 1 0 0 

0 1 0 1 2 1 0 1 0 

0 0 1 1 1 2 0 0 1 

1 0 0 1 0 0 2 1 1 

0 1 0 0 1 0 1 2 1 

0 0 1 0 0 1 1 1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

×

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v 11 

v 12 

v 13 

v 21 

v 22 

v 23 

v 31 

v 32 

v 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

2 

2 

2 

2 

2 

2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

− λ

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 e 
− t 

τ

c 12 e 
− t 

τ

c 13 e 
− t 

τ

c 21 e 
− t 

τ

c 22 e 
− t 

τ

c 23 e 
− t 

τ

c 31 e 
− t 

τ

c 32 e 
− t 

τ

c 33 e 
− t 

τ

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.30)

d u 11 

dt 
= −2 ηv 11 − η( v 12 + v 13 ) − η( v 21 + v 31 ) + 2 η − λC 11 e 

− t 
τ

(A.31)
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d u 12 

dt 
= −2 ηv 12 − η( v 11 + v 13 ) − η( v 22 + v 32 ) + 2 η − λC 12 e 

− t 
τ

(A.32) 

d u 13 

dt 
= −2 ηv 13 − η( v 11 + v 12 ) − η( v 23 + v 33 ) + 2 η − λC 13 e 

− t 
τ

(A.33) 

d u 21 

dt 
= −2 ηv 21 − η( v 22 + v 23 ) − η( v 11 + v 31 ) + 2 η − λC 21 e 

− t 
τ

(A.34) 

d u 22 

dt 
= −2 ηv 22 − η( v 21 + v 23 ) − η( v 12 + v 32 ) + 2 η − λC 22 e 

− t 
τ

(A.35) 

d u 23 

dt 
= −2 ηv 23 − η( v 21 + v 22 ) − η( v 13 + v 33 ) + 2 η − λC 23 e 

− t 
τ

(A.36) 

d u 31 

dt 
= −2 ηv 31 − η( v 32 + v 33 ) − η( v 11 + v 21 ) + 2 η − λC 31 e 

− t 
τ

(A.37) 

d u 32 

dt 
= −2 ηv 32 − η( v 31 + v 33 ) − η( v 12 + v 22 ) + 2 η − λC 32 e 

− t 
τ

(A.38) 

d u 33 

dt 
= −2 ηv 33 − η( v 31 + v 32 ) − η( v 13 + v 23 ) + 2 η − λC 33 e 

− t 
τ

(A.39) 

ppendix B 

The “Transportation” problem, also known as “Distribution”

roblem is a linear programming problem, whose description can

e associated with the statement: 

“There is the need to transport units from a site call ‘The

ource’ to other site called ‘The Destination’ minimizing the cost

f sending and at the same time satisfying offer and demand re-

trictions”. 

This problem is expressed as follows. 

inimize z = 

g ∑ 

i =1 

h ∑ 

j=1 

c i j v i j (B.1) 

ub ject to 

h ∑ 

j=1 

v i j = a i , i = 1 , . . . , g (B.2)

g 
 

i =1 

v i j = b j , j = 1 , . . . , h 

 i j ≥ 0 , i = 1 , . . . , g; j = 1 , . . . , h (B.3) 

here, c ij represents one element of the cost and v ij is the deci-

ion variable. There would be slack components in order to have a

quare matrix of size n x n . 

In particular, we obtain the solution to the “Transportation”

roblem for a 3-by-3 system, using the recurrent neural network

y Wang [10] and following the method proposed in [21] . The

athematical formulation of the supporting analog neural network

s 

d u i j ( t ) 

dt 
= −η

n ∑ 

k =1 

v̄ ik ( t ) − η
n ∑ 

l=1 

v̄ l j ( t ) + ηθi j − λc i j e 
− t 

τ (B.4) 
¯
 i j = g 

(
u i j ( t ) 

)
(B.5) 

here, η and λ are constants. g (.) is a sigmoid function, providing

he solution is in the range [0, 1]; therefore, the values of a, b y v

n Eqs. (B.1) –(B.3) are also in this range. 

Defining: q = max { a i , b i : i = 1 , 2 , 3 } then, a new set of variables

s 

 = q ̄v , a = q ̄a y b = q ̄b . 

Using the new values of a y b , Equations ( B .1)–( B .3) for the case

f a 3-by-3 system are now represented by 

inimize z = 

3 ∑ 

i =1 

3 ∑ 

j=1 

c i j ̄v i j (B.6) 

ub ject to 

3 ∑ 

j=1 

v̄ i j = ā i , i = 1 , . . . , 3 (B.7)

3 
 

i =1 

v̄ i j = b̄ j , j = 1 , . . . , 3 

¯
 i j ∈ [ 0 , 1 ] , i = 1 , . . . , 3 ; j = 1 , . . . , 3 (B.8) 

Eqs. (B.7) –(B.10) get a matrix form as follows 

inimize z̄ = c T v̄ (B.9) 

ub ject to A ̄v = d (B.10) 

Eq. (B.11) can be developed for the 3-by-3 system, to have 

inimize z̄ = [ c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33 ] 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v̄ 11 

v̄ 12 

v̄ 13 

v̄ 21 

v̄ 22 

v̄ 23 

v̄ 31 

v̄ 32 

v̄ 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.11) 

Eq. (B.11) uses matrix A and vector d as follows, also for the

-by-3 system 

 = 

[ 

B 1 B 2 B 3 

I I I 
0 0 0 

] 

(B.12) 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 1 1 1 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.13) 

 = 

[ 

ā 

b̄ 
0 

] 

(B.14) 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ā 1 
ā 2 
ā 3 
b̄ 1 
b̄ 2 
b̄ 3 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.15) 
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Finally, the offer and demand restrictions are expressed as 

A ̄v = d (B.16)

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 0 0 0 0 0 0 

0 0 0 1 1 1 0 0 0 

0 0 0 0 0 0 1 1 1 

1 0 0 1 0 0 1 0 0 

0 1 0 0 1 0 0 1 0 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v̄ 11 

v̄ 12 

v̄ 13 

v̄ 21 

v̄ 22 

v̄ 23 

v̄ 31 

v̄ 32 

v̄ 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ā 1 
ā 2 
ā 3 
b̄ 1 
b̄ 1 
b̄ 1 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.17)

v̄ 11 + ̄v 12 + ̄v 13 = ā 1 (B.18)

v̄ 21 + ̄v 22 + ̄v 23 = ā 2 (B.19)

v̄ 31 + ̄v 32 + ̄v 33 = ā 3 (B.20)

v̄ 11 + ̄v 21 + ̄v 31 = b̄ 1 (B.21)

v̄ 12 + ̄v 22 + ̄v 32 = b̄ 2 (B.22)

v̄ 13 + ̄v 23 + ̄v 33 = b̄ 3 (B.23)

The set of differential equation ( B .4) has its matrix form given

as 

du ( t ) 

dt 
= −η

(
W ̄v − θ

)
− λc e −

t 
τ (B.24)

The matrix of weights W is defined as 

 = A 

T A (B.25)

W = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 1 1 1 0 0 1 0 0 

1 2 1 0 1 0 0 1 0 

1 1 2 0 0 1 0 0 1 

1 0 0 2 1 1 1 0 0 

0 1 0 1 2 1 0 1 0 

0 1 0 1 2 1 0 1 1 

1 0 0 1 0 0 2 1 1 

0 1 0 0 1 0 1 2 1 

0 0 1 0 0 1 1 1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.26)

The offer and demand limits are related by matrix θ as 

θ = A 

T d (B.27)

θ = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 1 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 

1 0 0 0 0 1 0 0 0 

0 1 0 1 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 

0 1 0 0 1 0 0 0 0 

0 0 1 1 0 0 0 0 0 

0 1 1 0 1 0 0 0 0 

0 0 1 0 0 1 0 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ā 1 
ā 2 
ā 3 
b̄ 1 
b̄ 2 
b̄ 3 
0 

0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.28)

θ = 

⎡ 

⎣ 

ā 1 + ̄b 1 ā 1 + ̄b 2 ā 1 + ̄b 3 
ā 2 + ̄b 1 ā 2 + ̄b 2 ā 2 + ̄b 3 
ā 3 + ̄b 1 ā 3 + ̄b 2 ā 3 + ̄b 3 

⎤ 

⎦ (B.29)

Replacing matrices W y θ in the below matrix form, where λ is

defined as: 1/ c max , we get for the 3-by-3 system, the below alge-

braic analysis. 

du ( t ) 

dt 
= −η

(
W ̄v − θ

)
− λc e −

t 
τ (B.30)
du ( t ) 

dt 
= −η

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 1 1 1 0 0 1 0 0 

1 2 1 0 1 0 0 1 0 

1 1 2 0 0 1 0 0 1 

1 0 0 2 1 1 1 0 0 

0 1 0 1 2 1 0 1 0 

0 0 1 1 1 2 0 0 1 

1 0 0 1 0 0 2 1 1 

0 1 0 0 1 0 1 2 1 

0 0 1 0 0 1 1 1 2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

v̄ 11 

v̄ 12 

v̄ 13 

v̄ 21 

v̄ 22 

v̄ 23 

v̄ 31 

v̄ 32 

v̄ 33 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

−

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ā 1 + ̄b 1 
ā 1 + ̄b 2 
ā 1 + ̄b 3 
ā 1 + ̄b 1 
ā 1 + ̄b 2 
ā 1 + ̄b 3 
ā 1 + ̄b 1 
ā 1 + ̄b 2 
ā 1 + ̄b 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

− λ

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c 11 e 
− t 

τ

c 12 e 
− t 

τ

c 13 e 
− t 

τ

c 21 e 
− t 

τ

c 22 e 
− t 

τ

c 23 e 
− t 

τ

c 31 e 
− t 

τ

c 32 e 
− t 

τ

c 33 e 
− t 

τ

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.31)

d u 11 

dt 
= −2 ηv̄ 11 − η( ̄v 12 + ̄v 13 ) − η( ̄v 21 + ̄v 31 ) 

+ η
(
ā 1 + ̄b 1 

)
− λC 11 e 

− t 
τ (B.32)

d u 12 

dt 
= −2 ηv̄ 12 − η( ̄v 11 + ̄v 13 ) − η( ̄v 22 + ̄v 32 ) 

+ η
(
ā 1 + ̄b 2 

)
− λC 12 e 

− t 
τ (B.33)

d u 13 

dt 
= −2 ηv̄ 13 − η( ̄v 11 + ̄v 12 ) − η( ̄v 23 + ̄v 33 ) 

+ η
(
ā 1 + ̄b 3 

)
− λC 13 e 

− t 
τ (B.34)

d u 21 

dt 
= −2 ηv̄ 21 − η( ̄v 22 + ̄v 23 ) − η( ̄v 11 + ̄v 31 ) 

+ η
(
ā 2 + ̄b 1 

)
− λC 21 e 

− t 
τ (B.35)

d u 22 

dt 
= −2 ηv̄ 22 − η( ̄v 21 + ̄v 23 ) − η( ̄v 12 + ̄v 32 ) 

+ η
(
ā 2 + ̄b 2 

)
− λC 22 e 

− t 
τ (B.36)

d u 23 

dt 
= −2 ηv̄ 23 − η( ̄v 21 + ̄v 22 ) − η( ̄v 13 + ̄v 33 ) 

+ η
(
ā 2 + ̄b 3 

)
− λC 23 e 

− t 
τ (B.37)

d u 31 

dt 
= −2 ηv̄ 31 − η( ̄v 32 + ̄v 33 ) − η( ̄v 11 + ̄v 21 ) 

+ η
(
ā 3 + ̄b 1 

)
− λC 31 e 

− t 
τ (B.38)

d u 32 

dt 
= −2 ηv̄ 32 − η( ̄v 31 + ̄v 33 ) − η( ̄v 12 + ̄v 22 ) 

+ η
(
ā 3 + ̄b 2 

)
− λC 32 e 

− t 
τ (B.39)

d u 33 

dt 
= −2 ηv̄ 33 − η( ̄v 31 + ̄v 32 ) − η( ̄v 13 + ̄v 23 ) 

+ η
(
ā 3 + ̄b 3 

)
− λC 33 e 

− t 
τ (B.40)
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