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Abstract — In this manuscript we present the 

implementation of an artificial neural network type Multilayer 

Perceptron (ANN-MP or NNMP) in Field-Programmable Gate 

Arrays (FPGA), including Back-Propagation training method 

based on descendent gradient. This network has 2 

reconfigurable hidden layers, adjustable parameters (epochs 

and ratio learning) and batch learning. The proposed 

architecture aims to reduce the number of logical elements to 

be used, so serial processing is utilized. In order to test the 

performance of the trained network, a nonlinear function was 

approximated with satisfactory results. 

Keywords — Artificial neural network, back propagation, 

descendent gradient, FPGA. 

 

I. INTRODUCTION 

The study of artificial neural networks (ANN) and its 
implementation in hardware has become significant in 
engineering applications. ANN are used in plentiful variety 
of applications. The choice of one ANN depends on the 
problem to be solved, either for function approximation, 
classification, data fixing, pattern recognition or forecasting. 
An ANN architecture consists of a set of connections 
between simple nonlinear processing units (neurons) that 
team up to produce an output stimulus [1]. Multilayer 
Perceptron (MLP) is one of the most widespread 
architectures, and Back Propagation is the foremost training 
method for adjusting it. For creating a network is very 
important its topology, however there is not a clear 
methodology for develop and training it. A complex network 
is not always the most efficient to reduce the error, it 
depends on the application. 

Hardware implementation of an ANN for a specific 
problem entails two essential stages: 

Configuration and training: network type and 
configuration (inputs, number of layers, number of neurons 
per layer, connections between layers, etc.) are chosen, then 
a software tool is used for training. This training produces 
the weights and bias with which the network operates 
according to the task it was conceived. 

Hardware implementation: optimized weights and bias as 
well as the best ANN configuration are used to build the 
hardware implementation. This information lets know the 
number of adders, multipliers, registers, etc., and connections 
among them in order to conform the hardware system. 

Once there is a hardware implementation, if it were 
necessary to change the architecture, adding more 

inputs/outputs or using new training data it would be 
indispensable to reconfigure and train the network in 
software again and carry out a new hardware 
implementation.  

FPGAs are the most utilized devices for an ANN 
hardware implementation due to its reconfigurable platform. 
These devices provide orders of magnitude of better 
performance compared to software simulation [3]. Hardware 
implementation of an ANN with training algorithm have 
resulted in various studies, the main focus of these studies is 
the implementation of parallel networks that do faster 
computations [4, 5, 6]. Other focus is the optimization of 
logic resources, networks working serially [8]. When training 
a network, the training data can be presented in three training 
protocols: stochastic, batch and on-line [2]. However, batch 
training not used, because of the complexity in the 
calculation of training algorithm.  

In this work we present the hardware implementation of a 
NNMP that includes a training algorithm based on Back-
Propagation (NNMP-BP) with batch training protocol, which 
allows training the network directly in hardware in real time. 
The NNMP-BP architecture was built using a generic VHDL 
description (Very high speed integrated circuit Hardware 
Description Language). For a better understanding of the 
implemented algorithm, Back Propagation and its mean 
features is introduced in Section II. The proposed 
architecture is presented in section III. Some representative 
results and conclusions are given in sections IV and V, 
respectively. 

 

II. BACKPROPAGATION ALGORITHM 

A.  MULTILAYER PERCEPTRON 

Multilayer Perceptron architecture (MP) is one of the 
most employed ANN. A generic MP is shown in Fig. 1 and 
consists of the following layers: 

Input Layer: It has one or more inputs whose number 
depends on the application; each input is connected and 
multiplied by the synaptic weight of each neuron of the first 
hidden layer. 

Hidden Layers: They consist of one or more layers of 
neurons; each neuron is connected to all the neurons in the 
next layer by a synaptic weight. 

Output Layer: It contains the neurons matching the 
number of the network outputs. 
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Fig. 1 Multilayer Perceptron Neural Network Model. 

The use of NNMP goes through two stages: a training 
phase, where the network learns to realize a particular task 
and an operation phase, when the network performs the task 
it was trained for. Throughout the training phase there are 
two important steps: Forward stage and Back-Propagation 
stage. 

In the Forward stage the output of the network is 
calculated from the input values, that is, input signals 
propagate through hidden layers until an output value is 
obtained. 

In the Back-Propagation stage it is calculated an error 
between the expected value and the output obtained in the 
forward stage, this error is propagated to the neurons inside 
the network via synaptic weights, an error corresponding to 
each neuron is returned and the network weights and bias are 
updated. 
 
B.  FORWARD STAGE 

In the Forward stage the output of the network is 
calculated. Let’s assume Xi = [X1, X2... Xn] represents the 
inputs of the network, Wij is the synaptic weight of neuron j 
associated with an input i, Yh, j is the output of neuron j (j = 1, 
2... q) in the layer h (h = 1, 2... m); bhj is the bias. The input 
of a neuron of the first hidden layer (h = 1) is expressed by 
equation (1). 

𝑆1,𝑗 = ∑(𝑊𝑖,𝑗 ∗ 𝑋𝑖 + 𝑏1,𝑗)

𝑛

𝑖=1

 …     (1) 

The accumulation performed in the input of a neuron is 
processed by a nonlinear activation function. Tangent 
sigmoid function is generally used, and it generates a 
continuous output value which varies between -1 and 1. In 
Fig. 2 a tangent sigmoid and its derivative are shown. 

The output of a neuron in the first hidden layer is 
expressed by equation (2): 

𝑌1,𝑗 = 𝑓(𝑆1,𝑗) = 𝑓 (∑(𝑊𝑖,𝑗 ∗ 𝑋𝑖 + 𝑏1,𝑗)

𝑛

𝑖=1

) …     (2) 

 

 

Fig. 2 Tangent sigmoid function and its derivative. 

Calculations made by neurons in subsequent hidden 
layers and the output layer are expressed by equations (3) 
and (4). 

             𝑆ℎ,𝑗 = ∑(𝑊𝑘,𝑗 ∗  𝑌𝑘 + 𝑏ℎ,𝑗)           

𝑚

𝑘=1

…         (3) 

𝑌ℎ,𝑗 = 𝑓(𝑆ℎ,𝑗) = 𝑓 (∑(𝑊𝑘,𝑗 ∗  𝑌𝑘 + 𝑏ℎ,𝑗)

𝑚

𝑘=1

) …       (4) 

Where k=j(h-1) denotes neuron j of previous layer (h-
1); Wk,j is the synaptic weight associated between 
neurons k and j. 

 
C. BACK-PROPAGATION STAGE 

In this stage the error signal is propagated backwards 
within the network and the descendent gradient algorithm is 
used to update weights and bias; the update is performed in 
three main steps, namely, 1), 2) and 3). 

1) Using equation (5) we get the error for neurons in the 
output layer, and equation (6) calculates the gradient of 
error.  

𝜀𝑜𝑢𝑡,𝑗 = (𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑌𝑜𝑢𝑡,𝑗)   …    (5) 

 

𝛿𝑜𝑢𝑡,𝑗 = 𝜀𝑜𝑢𝑡,𝑗 ∗  𝑓′(𝑌𝑜𝑢𝑡,𝑗)  . . .   (6) 

 Where out,j is the error between the target and the actual 

output of neuron j in output layer; out,j is the gradient of 
error which is propagated into neurons in hidden layer via 
synaptic weights. Equations (7) and (8) respectively 
determine the propagated error and its local gradient.  

           𝜀ℎ,𝑗 = 𝛿𝑙 ∗  𝑊𝑗,𝑙           …    (7) 

         𝛿ℎ,𝑗 = 𝜀ℎ,𝑗 ∗  𝑓′(𝑌ℎ,𝑗)  …    (8) 

Where 𝑙=j(h+1) represents neuron j in subsequent layer of 
h; ; 𝑊𝑗,𝑙 is the synaptic weight between neurons j and l. 
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2) Equations (9) and (10) define respectively the variation 
of weights and bias for the first layer and those for 
internal layers.  

∆𝑊𝑖,𝑗 = 𝛼 ∗ 𝛿1,𝑗 ∗ 𝑋𝑖            ∆𝑏1,𝑗 = 𝛼 ∗ 𝛿1,𝑗   …   (9) 

∆𝑊𝑘,𝑗 = 𝛼 ∗ 𝛿ℎ,𝑗 ∗ 𝑌ℎ,𝑗       ∆𝑏ℎ,𝑗 = 𝛼 ∗ 𝛿ℎ,𝑗   …   (10) 

 Where  is the learning ratio that governs the degree of 
convergence of the network to learn. 

 
3) Weights and bias updating.  

𝑊𝑖,𝑗
(𝑛+1)

= 𝑊𝑖,𝑗
(𝑛)

+ ∆𝑊𝑖,𝑗
(𝑛)

  

                   𝑏1,𝑗
(𝑛+1)

= 𝑏1,𝑗
(𝑛)

+ ∆𝑏1,𝑗
(𝑛)

      …   (11) 

 

𝑊𝑘,𝑗
(𝑛+1)

= 𝑊𝑘,𝑗
(𝑛)

+ ∆𝑊𝑘,𝑗
(𝑛)

  

                   𝑏ℎ,𝑗
(𝑛+1)

= 𝑏ℎ,𝑗
(𝑛)

+ ∆𝑏ℎ,𝑗
(𝑛)

      …   (12) 

 Where (𝑛) represents present values and  (𝑛 + 1) are the 
values to be updated for use in the next iteration. 

 
D. BATCH TRAINING  

Calculation realized in the forward and the back-
propagation stages for each presented pattern, embodies one 
learning iteration (epoch). When training a network with 
protocol stochastic or on-line, the gradient is calculated and 
the weights are updated for each iteration. In batch 
processing, the gradients obtained for each iteration are 
added and averaged, and the weights are updated when all 
the training patterns are presented. 

 

III. HARDWARE IMPLEMENTATION 

The network that we implemented in hardware has the 
following features: 2 inputs (X, Y), 2 hidden layers and 1 
output layer to conform a 2-5-2-1 architecture (Fig. 3). 
Depending on the problem complexity, we use switches to 
activate/deactivate the neurons that conforms the hidden 
layers so we can evaluate the proposed training algorithm for 
different hidden layer structures.  

X

Y

Z

 
Fig. 3 Hardware reconfigurable network 2-5-2-1. 

A. HARDWARE  

When implementing a ANN in an FPGA one key thing to 
consider is the use of logical resources, particularly the 
multipliers included in DSP block, because digital 
implementation of neurons generally uses three multipliers 
per neuron, as will be explained in the next section, 
moreover the number of DSP's is limited for each FPGA 
family. For our system, we utilized an Atlys development 
board that uses a Spartan-6 XC6SL45 device of Xilinx. 

For the implementation we worked with 16-bit words, 
utilizing a fix-point format [9] with two-complement signed 
numbers. The word was divided as shown in Fig. 4. 

 
 

 

 

 

Fig. 4 16-bit fix-point number format. 

 
B. BASIC NEURON 

According with (2) and (4), a neuron executes two main 
processes: 

1. The sum of products of the inputs by the weights plus 
their bias. 

2. Evaluation of the activation function (tangent sigmoid). 
This was done in digital form using line segments from 
which the slope (a) and intercept (c) are obtained for each 
line [7]. 

 In our case, an additional process is the estimation of the 

activation function derivative.  

 

R
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 Fig. 5 Processes performed in a neuron. 

Neuron digital implementation requires three multipliers 
to accomplish the processes described above (Fig. 5), this 
might consume most DSPs available in the FPGA; for 
reducing this amount we work with serial processing 
technique [4, 5, 6]. Fig. 6 depicts the use of a single 
multiplier for the three processes described above. 
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Fig. 6 Neuron serial processing. 

Multiplexers are controlled by a selection signal that 
operates as follows: 

1. For the first selection value, input (Xi), the synaptic 
weight (Wij) and bias are picked to get the output value 
(n) of MAC function; this value is stored in a register and 
fed back to the multiplexers. 

2. When the selection signal changes to the second value, 
(n) is multiplied by the slope (a) of the selected line and 
added to its ordinate (c), in this way the activation 
function is evaluated to obtain the output of the neuron 
Y(n), which is stored in the register; this value is fed 
equally to the multiplexers. 

3. With the next value of the selection signal we get the 
derivative of the activation function by multiplying Y(n) 
by itself and adding (-1). 

 

C. GENERAL STRUCTURE 

The NNMP-BP implemented in hardware is configurable 
and the network architecture to be used can be selected; the 
learning ratio (lr) as well as the number of training epochs 
can be set. In Fig. 7 the NNMP-BP architecture is shown. 
There are three main modules whose function is explained 
below. 
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Fig. 7 NNMP-BP implementation. 

 
a) Feed forward    

This module contains the network architecture, which has 
three neuron layers, each neuron corresponds to a calculation 
block as previously explained.  

The output of this module provides the calculated values 
of each neuron Yh,j and Yout,j which correspond to equations 
(2 and 4). The derivative of each block dYh,j y dYout,j is also 
obtained. 

 
b) Back Propagation  

This module calculates the deltas of weights and biases, 
corresponding to equations (6-10). Due to the large number 
of multipliers needed for these, serial processing technique is 
applied too. 

 
c) Weights Update 

 Synaptic weights and biases are updated in this module 
for each training epoch, in accordance with (11) and (12), 
carrying out the following tasks: 

1. Sum of synaptic weights deltas obtained for each 

training pattern. 

 

2. Mean of calculated deltas (batch training) to obtain 

the new synaptic weights values, which will be 

transmitted to the module output. 

 
Besides the 3 basic modules, there are other modules 

used for the neural network synchronization and autonomy. 

 
d) Control 

This module generates the signals to control the flow of 
information throughout the other modules and to enable or 
disable them for the realization of different processes: 

 
Training 

This process is performed using Feed Forward and Back 
Propagation modules which are activated using F_F and B_P 
signals, in this step we utilize 1024 vectors. 

 
Neural network testing 

Once the network has been trained, the system is set in 
testing mode using F_F signal, which activates only the Feed 
forward module and disables Back Propagation and weight 
updating processes. In this phase the neural network employs 
only the updated synaptic weights and biases, and the output 
produced by the network for the 128 test data is evaluated.  

The training of an artificial network at software level 
(Matlab) uses different stop criteria (epochs, performance, 
validation checks, etc.), thus it is possible to monitor the 
performance function (mean square error MSE) to be 
minimized. In this work we use the number of epochs as stop 
condition which can be adjusted as described before.  

 
e) Data Inputs  

In this module the 1024 training data and the 128 test 
data are stored. 

467



f) Home Weights  

In this section initial synaptic weights and biases are 
stored. To obtain these values it is used Matlab that generates 
them randomly. 

 

D. FPGA UTILIZED RESOURCES 

One of the objectives proposed in this paper is the 
optimization of logic resources, so we had to limit the 
training and test data to be represented by power-of-two 
numbers in order to simplify the averaging by elimination 
division and just using arithmetic shift instead. Table 1 
resumes FPGA logic resources used for implementing our 
NNMP-BP architecture. 

 
Table 1. Resources used by the FPGA 

Target Device: xc6slx45-3csg324 

Slice Logic 

Utilization 
Used Available Utilization 

Number of Slice 

Registers 
6,151 54,576 11% 

Number of Slice 

LUTs 
6,384 27,288 23% 

Number of occupied 

Slices 
2,538 6,822 37% 

Number of RAM 

B16BWERs 
3 116 2% 

Number of RAM 

B8BWERs 
3 232 1% 

Number of DSP48A1s 11 58 18% 

Number of 

PLL_ADVs 
1 4 25% 

 

 

IV. TESTING AND RESULTS 

In order to evaluate the implemented architecture, the 
task of approximating a nonlinear function was proposed 
(Fig. 8). We tested 2-5-1 and 2-5-2-1 architectures. 

 

Fig. 8   Test function  𝒛 = 𝟒𝒙𝒆−𝟒(𝒙𝟐+𝒚𝟐) 

 

The training was made for different learning rates and 
different epochs. In Fig. 9 we can see the graphic of MSE 
during the training of the 2-5-2-1 network architecture for 
different learning rates; we observe that a learning rate lr = 
0.7 produced a MSE of 0.00143. 

 

 

Fig. 9 MSE for different learning ratios in 2-5-2-1 
architecture. 

 
To evaluate the implementation it was created a module 

that calculates the MSE for the test data. The values obtained 
for the two selected architectures are presented in Table 2. 

 

   Table 2. Results of testing both architectures  

 Architecture  (2-5-1) Architecture (2-5-2-1) 

MSE 0.01434 0.00143 

R 0.9441 0.9936 

lr 0.55 0.7 

Epochs 10000 10000 

 
From the hardware implementation, FPGA data were 

extracted for analysis in Matlab. Fig. 10 shows the MSE for 
the 128 test data; it represents the squared difference between 
the output data produced by the FPGA and the targets. We 
note that for this application our system has a maximum 
square error of about 0.01. 

 

 

Fig. 10 Quadratic error for 2-5-2-1 architecture. 
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In Fig. 11 is presented a scatter plot with the regression 
line and the line equation that will help us to make future 
predictions about the output that would produce our digital 
system from any input value. Additionally, it is shown the 
Pearson correlation coefficient, which indicates the degree of 
dependence between expected test data and the output data of 
the digital system and it has a value R = 0.9936. 

 

 

Fig. 11 Correlation coefficient (R) for the test set and 2-5-2-1 

architecture. 
 

The results can not to be compared directly with other 
previous studies, as each study takes a different focus, using 
different architectures and implemented in different 
technologies. However, we can mention that in this work 
focused on the optimization of resources (one DSP by 
neuron) and train the network using a protocol type batch. 
Table 3 compares these features with other studies.  

 

V. CONCLUSIONS 

In this paper, we presented the implementation of an 
ANN architecture with Back Propagation training algorithm. 
It is reconfigurable, allowing us to change its learning rate 
and training epochs in hardware to train the network in real 
time without the need of reprogramming the FPGA for each 
change of these parameters. 

Serial processing implementation allows significant 
saving of FPGA logical resources, but the main drawback of 
this technique is in reducing its performance, increasing the 
network response time, which was 1.96 ms per epoch for a 
50 MHz clock signal. In this first version the number of 
training epochs was implemented as stopping criterion; for 

an improved version we want to add more stop criteria to 
achieve a better performance of the training algorithm. 
Another point to consider is to include a routine for 
generating random initial weights and biases within the 
implemented system. 
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