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Abstract—Autoencoder is a widely used neural architecture
for dimensionality reduction. It can be considered similar to
the principal component analysis (PCA) methodology. However,
the final distribution of the components between classes does
not establish orthogonality between them, which can result in
a reduced separation between different classes. To address this
issue, we present a modified autoencoder architecture with an
orthogonal variant. The error minimization equation has been
changed to ensure orthogonality between the final components.
Our experiments show that the proposed orthogonal autoencoder
architecture generates a final distribution with more separability
than the PCA numerical process and a typical autoencoder
architecture. This makes it a promising approach for applications
that require high separability between different classes.

Index Terms—principal component analysis, autoencoder, or-
thogonal process, neural network, and dimensionality reduction.

I. INTRODUCTION

Data clustering is a complex topic that machine learning
techniques have tackled. It contributes to a better understand-
ing of the behavior of events from which samples formed
by characteristics or traits are recorded. One can extract or
identify patterns, trends, data groups with similar features, or
atypical data from these samples. However, all this is done to
analyze and interpret a larger goal, such as decision-making.

A database containing a high number of characteristics can
be simplified using the Principal Component Analysis (PCA)
technique [1], which is a data dimensionality reduction pro-
cedure. This new database is built with the important features
gained from the mathematical process developed in PCA.
However, the PCA method only involves the performance of
a linear data projection while considering the variance. On
the other hand, an autoencoder involves the development of a
non-linear type of process that projects the data in more than
one dimension, making it easier to extract the features that are
the most representative of the problem space.

The autoencoder is a neural architecture in which the
input vectors become the target vectors, and the error value
is calculated by comparing the similarity of the input and
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Fig. 1: Architecture of the Autoencoder.

output data [2]–[4]. The first component of an autoencoder
is responsible for encoding the information at the input, while
the second part is responsible for decoding, as shown in
Fig. 1. The middle section (CODE) is responsible for data
reduction and comprises the necessary numerical components
with which the original data supplied at the input can be
rebuilt. Reduced data, which are located in the CODE layer,
can be put to use in the process of grouping or clustering, as
described in [5]; this is the stage at which data groups that are
distinguished by their similarities to one another are obtained,
without taking into account any attribute that, in addition to
grouping them, serves to differentiate them. The orthogonal
autoencoder [6], which enhances the process of orthogonality
of data, improving the separability between data groups, is a
suggestion for data grouping and separation.

Thus, this paper presents the use of an autoencounter neural
architecture with orthogonal-variant to process databases. The
structure of the paper is as follows: In the next section, the
methodology used to process three databases is presented;
furthermore, each database is described. The following section
describes and analyzes the results obtained for each case. The
conclusions generated in this work are presented in the last
section.
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Fig. 2: Architecture of the Encoder.

II. MATERIALS AND METHOD

A. Architecture of Autoencoder

Autoencoders are neural architectures that are trained in an
unsupervised manner, where the objective is to encode the
vector of data that is presented in its input; this encoding
gives a reduction of the original vector and, starting from
their proceeds to the decording to reproduce the input vector
from the learned encodings again. Therefore, the output of an
autoencoder is the prediction of the neural architecture of the
input data. The initial neural architecture (autoencoder) has
been presented in Fig. 1; we start from left to right, where
the input vector is represented by the vector x, which will be
encoded into three components in the intermediate layer (also
known as latency space), this compressed vector is identified
by h. The vector h is decoded to produce the new vector x̂ at
the output. The vector x̂ is the prediction or response of the
network to the presence of vector x. Encoding (see Fig. 2) can
be defined mathematically by (1), where WEN are the synaptic
weights and bEN the polarization weights of the neurons in the
input layer. Similarly, the decoding is represented in (2), where
WDE and bDE are the synaptic and polarization weights,
respectively. f and g represent the transfer functions associated
with the neurons in the encoder and decoder layers. With the
following definition for the dimension: x, x̂ ∈ Rn and h ∈ Rd

and WEN ∈ Rd×n and WDE ∈ Rn×d. In this work, the
dimension d = 3 has been considered, which means that the
distribution of the input data can be visualized in a graph, as
depicted in Fig. 2.

h = f (WEN · x+ bEN ) (1)

x̂ = g (WDE · h+ bDE) (2)

The loss function is presented in (3). It represents the
weighted sum of the errors generated by the prediction of each
sample when divided by the total number of samples contained
in the database. This function is required for the autoencoder
training process because it indicates how appropriate the
reconstruction or prediction of the output vector concerns the
input. The mean square error, defined by (4), is the error
function.

L =
1

m

m∑
j=1

e
(
x(j), x̂(j)

)
(3)

e (x, x̂) =
1

2
∥x− x̂∥2 (4)

B. Architecture of Orthogonal Autoencoder

The training process for the autoencoder with the orthogonal
variant is given by minimizing the loss function given in (5).
hT is the transpose of the matrix h, and I is the identity matrix.
h has the dimension d × n. A lambda factor is a weighting
number of the orthogonalization term. It is determined that
h provides orthogonality between the input vectors when the
expression hT · h tends to approach identity matrix I .

L = ∥x− x̂∥2 + λ
∥∥hTh− I

∥∥2 (5)

C. DataBases

In this work, three databases have been considered. The first
one is a reference to a database known as the ”IRIS database,”
which is frequently utilized for the task of classification and
clustering. Iris Setosa, Iris Virginica, and Iris Versicolor are
the three classes that can be found in the database [7]; each
class has 50 samples. The length and width of both the sepal
and the petal are measured in centimeters and are included as
4 of the characteristics of each sample.

The second database is referred to as the ”Palmer
Archipelago (Antarctica) penguin data,” and Dr. Kristen Gor-
man and the Palmer Station, Antarctica LTER, are the ones
responsible for collecting the relevant data [8]. The database
contains 344 penguin samples spanning three distinct species
and three islands in the Palmer Archipelago in Antarctica. Four
features were recorded for each sample collected, correspond-
ing to the length of the flipper, the length and depth of the bill
(each expressed in millimeters), and body mass (expressed in
grams).

A chemical study of wines cultivated in the same region
of Italy but derived from three different cultivars was used to
compile the third database. The database contains 178 samples
of three distinct types of wine; the 13 characteristics that were
discovered in each of the three categories of wine are taken
into consideration [9]. These characteristics are: 1—Alcohol;
2—Malicacid; 3—Ash; 4—Alkalinity of ash; 5—Magnesium;
6—Total phenols; 7—Flavanoids; 8—Nonflavanoid phenols;
9—Proanthocyanins; 10—Color Intensity; 11—Hue; 12—
Diluted Wines; and 13—Proline.

Table I summarizes the parameters of the three databases.

TABLE I: Database Parameters

Name Data Feature Classes Dimensions
Iris 150 4 3 150× 4

Penguins 344 4 3 344× 4
Wine 178 13 3 178× 13
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III. RESULTS AND DISCUSSION

The three databases have been run through three different
dimensionality reduction procedures, the first of which was the
numerical PCA approach, the second of which was the con-
figuration of a conventional autoencoder (AE), and the third
of which was the orthogonal variant in an autoencoder (OAE).
All neural layers have been implemented with linear transfer
functions, and a total of one thousand iterations have been
carried out with the data set. 90% and 10% of the data have
been used randomly for the training and validation phases,
respectively. This division seeks that the model during the
training process contains the largest number of points for each
class, thus achieving a better approximation in the solution
process of the orthogonal matrix. In the validation process, it
is only verified that orthogonality has been achieved.

The Python programming language in its version 3.10 under
the Spyder programming environment utilizing the Tensorflow
library under the Windows 11 operating system with an i7
processor from the seventh generation was used to implement
all three dimensionality reduction methods. Each database
has its data preprocessed, and the normalization procedure is
performed on each of the features of the data. Calculations
based on the silhouette coefficient were performed to evaluate
the quality of the data grouping.

A. Processing using IRIS database

The Iris database was analyzed, and the suggested OAE
method’s results were compared with two benchmark methods,
PCA and AE to determine their relevance. Fig. 3 shows the
clusterings obtained by the three methods. In Fig. 3a, it was
observed that the clusters obtained by the PCA method are
the most dispersed; if we analyze the numerical scale on the
axes of the 3D graphs, we can say that the distribution of the
groups achieved by the OAE method is much more compact,
see Fig. 3c.

Figure 4 presents the plots of the loss value calculated in
the training and validation processes of AE and OAE. By
analyzing the loss axis, it can be determined that for the
training of the AE and OAE neural architectures, respectively,
the loss value is less than 0.1 for both methods. Although the
AE method achieves the minimum error with a lower number
of iterations, it is relevant to mention that the OAE method
consumes more computational resources when calculating the
orthogonality between classes but manages to ensure that the
groupings are compact.

B. Processing using PENGUINS database

The three methods were again applied to the Penguin
database, achieving clustering. The results show a similar
behavior to the processing of the Iris database. The data
distribution graphs are found in Fig. 5. The distribution that the
OAE supplies is condensed and clearly defined, in contrast to
the results shown by the PCA approach, which show a larger
distribution of the data and result in the classes sharing spaces.
The loss curves for the training and validation operations for
the AE and OAE approaches are presented in Fig. 6. Analyzing

(a) Clustering with PCA (b) Clustering with AE

(c) Clustering with OAE

Fig. 3: Iris Database processing with three methods, it is
important to determine the separability and compactness of
the clusters in each method: (a) PCA; (b) AE; (c) OAE.

(a) Loss Graphics AE (b) Loss Graphics OAE

Fig. 4: Values of loss at each iteration in the training and data
validation processes. (a)AE; (b)OAE.

the curves, it can be noticed that for both methods after
iteration 200, the training and validation are similar; however,
the loss value for AE is lower, although the clusters are more
compact for OAE.

C. Processing using WINE database

The wine database is complicated when you consider its
13 features and how closely they are related. Yet, the three
algorithms produce good clustering, as seen in Fig. 7. This
figure is well-known for having three groups corresponding
to the expected classes. The loss plots for the training and
validation phases are shown in Fig. 8 and are similar to those
obtained for the previous databases; the loss values are less
than 0.1.
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Fig. 5: Penguins Database processing with three methods, it
is important to determine the separability and compactness of
the clusters in each method: (a) PCA; (b) AE; (c) OAE.

(a) Loss Graphics AE (b) Loss Graphics OAE

Fig. 6: Values of loss at each iteration in the training and data
validation processes. (a)AE; (b)OAE.

Table II summarizes the data obtained from the silhouette
coefficient [10] to determine the quality of the clusters for
the three databases applying the three methods analyzed. It
is important to call attention to the fact that the magnitudes
of the axes in the data distribution graphs for the OAE result
are significantly lower in comparison to those for the other
approaches. This finding suggests that the clusters formed
using OAE have reduced dispersion and improve the clustering
capacity to be separated from one another. The best results are
highlighted in bold. Analyzing these data, we can see that the
orthogonal variant of the autoencoder presents the best data
distributions for all cases.

When examining the BigData paradigm and applying more
robust approaches in data mining, such as the t-distributed

(a) Clustering with PCA (b) Clustering with AE

(c) Clustering with OAE

Fig. 7: Wine Database processing with three methods, it is
important to determine the separability and compactness of
the clusters in each method: (a) PCA; (b) AE; (c) OAE.

(a) Loss Graphics AE (b) Loss Graphics OAE

Fig. 8: Values of loss at each iteration in the training and data
validation processes. (a)AE; (b)OAE.

TABLE II: Silhouette Coefficient

Database PCA AE OAE
Iris 0.4265 0.5264 0.6018

Penguins 0.5011 0.5183 0.6226
Wine 0.4892 0.5506 0.5941
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stochastic neighbor embedding (t-sne) method, it is possible
to say that the orthogonal variation of the autoencoder can be
utilized as a preprocessing when considering the analysis of
these data. This perspective can be reached after analyzing the
results of the study.

IV. CONCLUSION

The topic of data clustering has been tackled in this body
of work, and in doing so, three distinct approaches have
been investigated: the orthogonal variant, the numerical PCA,
and the classic autoencoder. In terms of data clustering, the
orthogonal variant displays superior quality, both in terms of
compactness and in terms of separability between classes.
The findings that were provided illustrate that class separation
can be accomplished using any one of the three approaches.
The silhouette coefficient is obtained in order to conduct
an analysis of the quality of clustering and separability.
This analysis demonstrates that the orthogonal variant is the
methodology that most effectively completes the task. The
orthogonal variant of the autoencoder can be used as a pre-
processing of the data in order to apply more robust methods
in data mining. One example of this would be the t-distributed
stochastic neighbor embedding method, which can provide
solutions to emerging issues such as the Internet of Things
(IoT) and machine learning.
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