
2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico City, Mexico. October 25-27, 2023

979-8-3503-0676-7/23/$31.00 ©2023 IEEE

Bearing Vibrations Classification for Failure
Detection with Machine Learning Tools

Luis Elias Salgado Solano
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

luis.salgado.s@cinvestav.mx

Oliverio Arellano Cárdenas
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

arellano@cinvestav.mx

Luis Martín Flores Nava
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

lmflores@cinvestav.mx

Felipe Gómez Castañeda
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

 fgomez@cinvestav.mx

José Antonio Moreno Cadenas
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

jmoreno@cinvestav.mx

Abstract— In this work, we have utilized Artificial Intelligence
for the extraction and recognition of mechanical vibration
information, which was obtained by electronic instruments, to
identify whether a mechanical device is healthy or presents some
kind of failure. We focused on building a Deep Autoencoder
architecture (an unsupervised architecture), training the model,
and extracting the internal structural information, also known as
clustering. Lastly, the compressed information (as most
Autoencoders have a reduced input representation in the internal
structure) is classified into two classes using the supervised
Extreme Learning Machine model.

We utilized a dataset provided by Case Western Reserve
University on its website. The signals were measured by sampling
an accelerometer at 12kS/s, radially placed on a bearing. The
measurements were taken for four cases, namely: the first case
encompassed vibrational signals from a healthy bearing, and the
other three cases involved bearings with intentionally induced
failures in the inner race, outer race, and the ball, respectively.

We developed this intelligent system using Python within the
Jupyter environment, which operates in conjunction with the
TensorFlow and Keras frameworks. We also successfully trained
the model.

Keywords— Deep Autoencoder, Extreme Learning Machine,
bearing failures, Artificial Intelligence.

I. INTRODUCTION

It is estimated that each year, 10 billion bearings are
manufactured globally. Out of these, 90% are installed in
machinery or equipment where they remain throughout their
lifespan. Around 9.5% are replaced as a preventive measure,
while 0.5% are replaced due to corrective reasons [1].

The monitoring of the mechanical health of rotating
components has been extensively investigated using various
approaches. These approaches encompass experimental
processes that can range from the straightforward utilization of
accelerometers or ultrasonic sensors to more meticulous
methods involving microscopic analysis [2].

Mechanical vibration signals have conventionally been
examined through mathematical models and Gaussian analysis
in various domains, including seismic signals and mechanical
health monitoring. In recent times, emerging trends in

computing have significantly enhanced the efficiency and
adaptability of Artificial Intelligence algorithms, which can be
applied to address various human requirements. Within the
realms of signal processing and pattern recognition through
Artificial Intelligence, information is approached from a
cognitive standpoint, resulting in a computational cost that is
lower than that of traditional signal processing methods.

There are two methods for extracting vibrational information
from waveforms: amplitude demodulation and peak value
detection. The latter method was pioneered by the Emerson
Reliability Solutions© group. These approaches involve signal
processing across various stages.

The aim of this study is to develop an efficient and cost-
effective system utilizing a deep autoencoder architecture and a
classifier. This system incorporates an Extreme Learning
Machine model to ascertain the health condition of a rotating
component based on its vibrational patterns. Furthermore, it is
practical for implementation on hardware platforms like FPGAs
or Raspberry systems. Such hardware could find utility across
diverse environments, offering a diagnostic tool that
circumvents the necessity for intricate analysis methodologies
or advanced measurement instruments. This feasibility owes
itself to machine learning techniques, which possess the
capability to extract information and produce models suitable
for deployment on a single-board computer.

II. DIMENSIONNALITY REDUCTION

Dimensionality reduction is a process that reduces the
quantity of random variables being examined, which holds
significance in the analysis of extensive datasets. Some
characteristics associated with this technique include:

 It prevents performance degradation when dealing with
high-dimensional data, as efficiency and accuracy tend
to deteriorate rapidly with increasing dimensions.

 It demands minimal computational resources.
 It aids in mitigating overfitting.

With the advent of artificial neural networks, an architecture
known as the Autoencoder was introduced. This architecture can

This work was funded by CONAHCyT in the M.Sc. studies program for L. E.
Salgado Solano and presented as proof of a Social Retribution Task.

20
23

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ric

al
 E

ng
in

ee
rin

g,
 C

om
pu

tin
g

Sc
ie

nc
e

an
d

A
ut

om
at

ic
 C

on
tro

l (
C

C
E)

 |
97

9-
8-

35
03

-0
67

6-
7/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

E6
00

43
.2

02
3.

10
33

28
81

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore. Restrictions apply.

effectively carry out dimensionality reduction tasks and has
been swiftly embraced owing to its remarkable flexibility. [4].

A. Basic Autoencoder

The architecture of a basic autoencoder comprises an input
layer, a hidden layer, and an output layer. This structure is
depicted in Fig. 1.

Fig. 1. Simple autoencoder.

The equation that describes this architecture is as follows:

𝑥 = 𝑔 𝑓(𝑥) (1)

Where f(x) represents the vector function for feature
extraction, also referred to as the hidden representation h, and is
described by:

𝒉 = 𝑓(𝑥) = 𝑠 (𝑾 𝒙 + 𝒃):ℝ → ℝ , 𝑛 > 𝑝 (2)

Where sf () signifies the activation function utilized in the
hidden layer, W1 represents the synaptic weight matrix linking
the input to the hidden layer, x denotes the input vector, bh stands
for the bias vector of the hidden layer, n denotes the input size,
and p signifies the number of neurons in the hidden layer. x̂
represents the input reconstruction produced by the decoding
function g(f(x)), and their expressions are interconnected as
shown in equation (3).

𝑥 = 𝑔(ℎ) = 𝑠 𝑾 𝒉 + 𝒃 :ℝ → ℝ (3)

Where sg () denotes the activation function applied in the
output layer, W2 represents the synaptic weight matrix linking
the hidden layer to the output layer, h signifies the hidden
representation of x, and by stands for the bias vector of the output
layer.

B. Deep Autoencoder

A deep autoencoder consists of two or more hidden layers.
This architecture offers the advantage of achieving enhanced
output reconstruction and improved feature extraction. This is

attributed to the hierarchical transfer of learning that transpires
among the hidden layers. The overall structure is illustrated in
Fig. 2.

Fig. 2. Deep autoencoder.

A stacked autoencoder can be conceptualized as an array of
sequentially linked autoencoders, where each layer serves as the
hidden layer of a preceding autoencoder and concurrently
functions as the input layer of a subsequent autoencoder.

Equations (4) to (7) formulate an autoencoder with n hidden
layers, executing a dimensional transformation of inputs from
ℝ → ℝ , where ℝ represents the input dimension and
ℝ signifies the output dimension. Equation (7) delineates
the reconstruction process, where the input dimension aligns
with the n-th layer and the output dimension matches that of the
initial input data.

ℎ = 𝜙 ∑ 𝑤 𝑥 + 𝑏 :ℝ → ℝ (4)

ℎ = 𝜙 ∑ 𝑤 ℎ , + 𝑏 :ℝ → ℝ (5)

⋮

ℎ = 𝜙 ∑ 𝑤 ℎ , + 𝑏 :ℝ → ℝ (6)

𝑦 = 𝜙 ∑ 𝑤 ℎ , + 𝑏 :ℝ → ℝ (7)

Where h1 … hn is the representation of hidden layers, ϕ1 …
ϕn, ϕn+1 are the activation functions of layers, w1 . . . wn, wn+1 are
the synaptic weights of layers, b1 … bn, bn+1 are the biases and y
is the reconstructed output.

C. Extreme Learning Machine model

Extreme Learning Machine (ELM) is a machine learning
algorithm designed for Single Layer Feedforward Neural
Networks (SLFNs). It employs a random selection of hidden
nodes and utilizes analytical methods to compute the output
weights of the SLFNs through the solution of a linear system.
This classification algorithm yields robust generalization
performance while simultaneously maintaining an exceptionally
rapid learning rate [5], [6].

Fig. 3 illustrates the ELM architecture, where it is evident
that the input layer is linked to the intermediate layer via

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore. Restrictions apply.

randomly generated weights, represented as wi. Additionally, the
intermediate layer connects to the output layer through weights
denoted as βi, which are determined using the Moore-Penrose
pseudo-inverse matrix.

Fig. 3. ELM architecture, with i inputs, j hidden nodes, and n classes.

The equation for ELM architecture is defined as H β = Y,
where H is the output of the hidden layer, β is the unknown
weights matrix, and Y is the targets matrix:

𝐇 =
𝑔(𝑤 𝑥 + 𝑏)⋯𝑔(𝑤 𝑥 + 𝑏)

⋮
𝑔(𝑤 𝑥 + 𝑏)⋯𝑔(𝑤 𝑥 + 𝑏)

∈ ℝ (8)

𝛃 =
𝛽
⋮
𝛽

=
𝛽 ⋯𝛽

⋮
𝛽 ⋯𝛽

∈ ℝ (9)

𝐘 =
𝑦
⋮
𝑦

=

𝑦 ⋯𝑦
⋮

𝑦 ⋯𝑦
∈ ℝ (10)

The solution for this system is defined as:

β = H† Y (11)

where H† is the generalized Moore-Penrose inverse.

III. PROPOSED METHODOLOGY

A. Dataset

To conduct our analysis, we employed a dataset accessible
on the website of Case Western Reserve University [7]. This
dataset encompasses a collection of files containing numerical
data pertaining to bearing vibrations, recorded during both
normal operating conditions and deliberately induced failure
scenarios. Each file contains vibrational data corresponding to a
distinct experimental condition. The files are categorized based
on the specific region where the failure was induced, in addition
to the diameter of the failure. The failures were deliberately
introduced through mechanized electrical discharge at a single

point, with diameters of 7 mil (0.1778 mm), 14 mil (0.3556
mm), and 21 mil (0.5334 mm).

The signals were acquired by sampling data from an
accelerometer, positioned radially within a bearing, at a
frequency of 12,000 samples per second. Our dataset comprised
four distinct cases, encompassing a vibrational signal obtained
from a healthy bearing, as well as signals stemming from
bearings with deliberately induced failures in the inner race,
outer race, and ball, respectively.

B. Calculation of vector size

To determine the appropriate length of each training vector
input for the model, two criteria need to be considered [8].
Firstly, the input should have the smallest possible dimension to
conserve model resources. Secondly, it should include the
maximum amount of information to allow the network to extract
characteristic biases while minimizing information loss. With
these criteria in mind, a tool was employed to visualize the
frequency spectrum of the signals in the database. This aimed to
identify the frequency ranges that contain the most significant
information. To accomplish this, a Python program was
employed. It extracted 1000 samples from four vectors within
the database and then applied the discrete Fourier transform. The
resulting graph is depicted in Fig. 4.

Fig. 4. Frequency spectra of Normal, 0.007”, 0.014”, and 0.021” databases.

Drawing from the insights conveyed by Fig. 4, it was
ascertained that a vector comprising 100 samples corresponds
to a period of 83.3µs when subjected to a sampling frequency
of 12kHz. Consequently, this yields a vector frequency of
120Hz. Such a configuration adequately encompasses high-
frequency information existing beyond the 1000Hz mark.

C. Methodology

The entire procedure undertaken by our proposed system is
illustrated in Fig. 5. This diagram encapsulates the full
methodology, encompassing the training of the Case Western
Reserve University database, signal conditioning as detailed in
Table I, dimensionality reduction through a deep autoencoder,
and the construction of the classifier using the Extreme Learning
Machine algorithm (ELM). Each of these stages was simulated
using the Python language within the TensorFlow platform and
leveraged the Keras libraries for machine learning purposes.

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. Proposed methodology.

The dataset comprises single-row vectors, each containing
over 100 x 103 samples. To facilitate the training process, it was
imperative to disintegrate these vectors into arrays of 100
sample vectors, as demonstrated in Table I, for the scenario of
0.007 inches.

TABLE I. TRAINING VECTORS AND SAMPLES

The deep autoencoder utilized for dimensionality reduction
comprises the subsequent layers: an input layer with 100
neurons and a linear activation function, followed by hidden
layers consisting of 31, 10, and 3 neurons, respectively, utilizing
the rectified linear activation function (ReLU). Finally, the
output layer with 100 neurons employs the hyperbolic tangent
as its activation function. This configuration of the autoencoder
is depicted in Fig. 6.

In order to establish a comprehensive measurement
methodology, the encoder section was seamlessly integrated
into the classifier, enabling predictions to be made in a single
step. Figure 7 illustrates the proposed integrated methodology.
This approach involves the encoder's role in compressing the
information and generating a three-characteristic representation
of the input. Subsequently, the ELM architecture leverages the
output information from the three encoder neurons to predict
their corresponding classes.

IV. EXPERIMENTS AND RESULTS

The model underwent training using files containing normal
samples as well as failures of sizes 0.007", 0.014", and 0.021".
In the initial phase, the encoder was trained to perform signal
reconstruction. As illustrated in Fig. 8, the reconstruction for the
0.007" case might not be completely precise, although the results
are reasonably coherent. The reconstruction exhibits a level of
differentiation between the datasets, and yet it is viable to
achieve effective clustering of the data. The core concept is
centered around reducing the vectors from a dimension of 100
down to just 3 parameters. These parameters can be graphically
represented in a three-dimensional plot, as portrayed in Fig. 9.
They subsequently serve as inputs for the classifier.

Fig. 6. Deep autoencoder model.

Fig. 7. Integral architecture, including the encoder and ELM stages.

Fig. 8. Original signal (blue) and reconstruction (red) for 0.007” failures.

The ELM architecture was trained using the set of 3-
parameter vectors obtained from the encoder. To assess the
performance of the integrated architecture, figures 10, 11, and
12 depict the confusion matrices generated by the ELM
architecture for both the healthy and failure classes of sizes
0.007", 0.014", and 0.021", respectively.

 Based on the information provided from the confusion
matrices, it's evident that the accuracy ranges from 80% to 99%.
These results are notably improved compared to the
performance for four classes. Importantly, in the context of
detecting failures in bearings, the specific type of failure might
not be as critical as simply determining the presence of a failure.

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore. Restrictions apply.

In this regard, your system appears to be performing effectively
for this purpose.

Fig. 9. Graph of the sets discerned by the encoder for 0.007” failures.

Fig. 10. Confusion matrix for two classes and failure of 0.007”.

Fig. 11. Confusion matrix for two classes and failure of 0.014”.

Fig. 12. Confusion matrix for two classes and failure of 0.021”.

V. DISCUSSION

Concerning the accuracy of the autoencoder namely, the
reconstruction error, which is not good, it is enough in the
dimensionality reduction task as a source of data for the ELM
classifier. Fig. 9 shows in a visual manner the separation
between good and bad bearings, leading to acceptable
classification values as presented in Figs. 10-12. The reduction
of dimension to 3 was chosen because it allows visualizing the
clustering of input data, otherwise, this analysis becomes
cumbersome.

VI. CONCLUSIONS

In summary, the employment of autoencoders can
significantly decrease the dimensionality of vector parameters
within the data, thereby simplifying problems that involve a
large number of features. This simplification in turn enables the
implementation of the system on platforms like FPGAs or
Raspberry systems.

Machine learning techniques are highly appropriate for
processing extensive amounts of information, making them
valuable tools for extracting insights from Big Data. The fusion
of a decoder stage and an ELM classifier yielded a unified
measurement architecture. This integrated architecture was
successfully simulated and exhibited satisfactory classification
outcomes.

REFERENCES
[1] Daño de rodamientos y análisis de fallas. Grupo SKF 2017. PUB BU/I3

17186 ES · Febrero 2017

[2] J. Halme y P. Andersson, “Rolling contact fatigue and wear fundamentals
for rolling bearing diagnostics - State of the art”, Proc. Inst. Mech. Eng.
Part J J. Eng. Tribol. vol. 224, n. 4, pp. 377-393, 2010.

[3] Emerson. AMS 2140 Machinery Health Analyzer. Technical report +1
865 675 2400. 835 Innovation Drive Knoxville, TN 37932 USA: Emerson
Reliability Solutions, dic. de 2017.

[4] Quentin Fournier y Daniel Aloise. “Empirical Comparison between
Autoencoders and Traditional Dimensionality Reduction Methods”. 2019
IEEE Second International Conference on Artificial Intelligence and
Knowledge Engineering (AIKE). IEEE, June 2019. doi:
10.1109/aike.2019.00044. url: https://doi.org/10.1109/aike.2019.00044..

[5] Xian-Da Zhang. A Matrix Algebra Approach to Artificial Intelligence.
Springer Singapore, 2020. doi 10.1007/978-981-15-2770-8. url:
https://doi.org/10.1007/978-981-15-2770-8.

[6] Zhou, Hongming, “Extreme learning machine for classification and
regression”, Doctoral thesis, Nanyang Technological University,
Singapore. 2014. Download URL: https://hdl.handle.net/10356/61529,
https://doi.org/10.32657/10356/61529.

[7] Case Western Reserve University. Bearing Data Center. Available at
https://engineering.case.edu/bearingdatacenter/12k-drive-end-bearing-
fault-data.

[8] Aston Zhang et al. Dive into Deep Learning. Cambridge University Press.
ISBN-10:1009389432, ISBN-13: 978-1009389433, arXiv:2106.11342,
2021.

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore. Restrictions apply.

