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Abstract— In this work, we have utilized Artificial Intelligence 
for the extraction and recognition of mechanical vibration 
information, which was obtained by electronic instruments, to 
identify whether a mechanical device is healthy or presents some 
kind of failure. We focused on building a Deep Autoencoder 
architecture (an unsupervised architecture), training the model, 
and extracting the internal structural information, also known as 
clustering. Lastly, the compressed information (as most 
Autoencoders have a reduced input representation in the internal 
structure) is classified into two classes using the supervised 
Extreme Learning Machine model. 

We utilized a dataset provided by Case Western Reserve 
University on its website. The signals were measured by sampling 
an accelerometer at 12kS/s, radially placed on a bearing. The 
measurements were taken for four cases, namely: the first case 
encompassed vibrational signals from a healthy bearing, and the 
other three cases involved bearings with intentionally induced 
failures in the inner race, outer race, and the ball, respectively. 

We developed this intelligent system using Python within the 
Jupyter environment, which operates in conjunction with the 
TensorFlow and Keras frameworks. We also successfully trained 
the model.  

Keywords— Deep Autoencoder, Extreme Learning Machine, 
bearing failures, Artificial Intelligence. 

I. INTRODUCTION 

It is estimated that each year, 10 billion bearings are 
manufactured globally. Out of these, 90% are installed in 
machinery or equipment where they remain throughout their 
lifespan. Around 9.5% are replaced as a preventive measure, 
while 0.5% are replaced due to corrective reasons [1]. 

The monitoring of the mechanical health of rotating 
components has been extensively investigated using various 
approaches. These approaches encompass experimental 
processes that can range from the straightforward utilization of 
accelerometers or ultrasonic sensors to more meticulous 
methods involving microscopic analysis [2]. 

Mechanical vibration signals have conventionally been 
examined through mathematical models and Gaussian analysis 
in various domains, including seismic signals and mechanical 
health monitoring. In recent times, emerging trends in 

computing have significantly enhanced the efficiency and 
adaptability of Artificial Intelligence algorithms, which can be 
applied to address various human requirements. Within the 
realms of signal processing and pattern recognition through 
Artificial Intelligence, information is approached from a 
cognitive standpoint, resulting in a computational cost that is 
lower than that of traditional signal processing methods.  

There are two methods for extracting vibrational information 
from waveforms: amplitude demodulation and peak value 
detection. The latter method was pioneered by the Emerson 
Reliability Solutions© group. These approaches involve signal 
processing across various stages. 

The aim of this study is to develop an efficient and cost-
effective system utilizing a deep autoencoder architecture and a 
classifier. This system incorporates an Extreme Learning 
Machine model to ascertain the health condition of a rotating 
component based on its vibrational patterns. Furthermore, it is 
practical for implementation on hardware platforms like FPGAs 
or Raspberry systems. Such hardware could find utility across 
diverse environments, offering a diagnostic tool that 
circumvents the necessity for intricate analysis methodologies 
or advanced measurement instruments. This feasibility owes 
itself to machine learning techniques, which possess the 
capability to extract information and produce models suitable 
for deployment on a single-board computer. 

II. DIMENSIONNALITY REDUCTION 

Dimensionality reduction is a process that reduces the 
quantity of random variables being examined, which holds 
significance in the analysis of extensive datasets. Some 
characteristics associated with this technique include: 

 It prevents performance degradation when dealing with 
high-dimensional data, as efficiency and accuracy tend 
to deteriorate rapidly with increasing dimensions. 

 It demands minimal computational resources. 
 It aids in mitigating overfitting. 

With the advent of artificial neural networks, an architecture 
known as the Autoencoder was introduced. This architecture can 
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effectively carry out dimensionality reduction tasks and has 
been swiftly embraced owing to its remarkable flexibility. [4]. 

A. Basic Autoencoder 

The architecture of a basic autoencoder comprises an input 
layer, a hidden layer, and an output layer. This structure is 
depicted in Fig. 1. 

 
Fig. 1. Simple autoencoder. 

The equation that describes this architecture is as follows: 

𝑥ො = 𝑔൫𝑓(𝑥)൯   (1) 

Where f(x) represents the vector function for feature 
extraction, also referred to as the hidden representation h, and is 
described by: 

𝒉 = 𝑓(𝑥) = 𝑠௙(𝑾
ଵ𝒙 + 𝒃௛): ℝ

௡ → ℝ௣, 𝑛 > 𝑝 (2) 

Where sf ( ) signifies the activation function utilized in the 
hidden layer, W1 represents the synaptic weight matrix linking 
the input to the hidden layer, x denotes the input vector, bh stands 
for the bias vector of the hidden layer, n denotes the input size, 
and p signifies the number of neurons in the hidden layer. x̂ 
represents the input reconstruction produced by the decoding 
function g(f(x)), and their expressions are interconnected as 
shown in equation (3). 

𝑥ො = 𝑔(ℎ) = 𝑠௚൫𝑾
ଶ𝒉 + 𝒃௬൯: ℝ

௣ → ℝ௡  (3) 

Where sg ( ) denotes the activation function applied in the 
output layer, W2 represents the synaptic weight matrix linking 
the hidden layer to the output layer, h signifies the hidden 
representation of x, and by stands for the bias vector of the output 
layer. 

B. Deep Autoencoder 

A deep autoencoder consists of two or more hidden layers. 
This architecture offers the advantage of achieving enhanced 
output reconstruction and improved feature extraction. This is 

attributed to the hierarchical transfer of learning that transpires 
among the hidden layers. The overall structure is illustrated in 
Fig. 2. 

 
Fig. 2. Deep autoencoder. 

A stacked autoencoder can be conceptualized as an array of 
sequentially linked autoencoders, where each layer serves as the 
hidden layer of a preceding autoencoder and concurrently 
functions as the input layer of a subsequent autoencoder.  

Equations (4) to (7) formulate an autoencoder with n hidden 
layers, executing a dimensional transformation of inputs from 
ℝு೔೙ → ℝு೚ೠ೟ , where ℝு೔೙ represents the input dimension and 
ℝு೚ೠ೟  signifies the output dimension. Equation (7) delineates 
the reconstruction process, where the input dimension aligns 
with the n-th layer and the output dimension matches that of the 
initial input data. 

ℎଵ = 𝜙ଵ൫∑ 𝑤ଵ𝑥௝ + 𝑏ଵ௝ ൯: ℝ௉ → ℝுభ  (4) 

ℎଶ = 𝜙ଶ൫∑ 𝑤ଶℎଵ,௝ + 𝑏ଶ௝ ൯:ℝுభ → ℝுమ  (5) 

⋮       

ℎ௡ = 𝜙௡൫∑ 𝑤௡ℎ௡ିଵ,௝ + 𝑏௡௝ ൯: ℝு೙షభ → ℝு೙ (6) 

𝑦௜ = 𝜙௡ାଵ൫∑ 𝑤௡ାଵℎ௡,௝ + 𝑏௡ାଵ௝ ൯: ℝு೙ → ℝ௉ (7) 

Where h1 … hn is the representation of hidden layers, ϕ1 … 
ϕn, ϕn+1 are the activation functions of layers, w1 . . . wn, wn+1 are 
the synaptic weights of layers, b1 … bn, bn+1 are the biases and y 
is the reconstructed output. 

C. Extreme Learning Machine model 

Extreme Learning Machine (ELM) is a machine learning 
algorithm designed for Single Layer Feedforward Neural 
Networks (SLFNs). It employs a random selection of hidden 
nodes and utilizes analytical methods to compute the output 
weights of the SLFNs through the solution of a linear system. 
This classification algorithm yields robust generalization 
performance while simultaneously maintaining an exceptionally 
rapid learning rate [5], [6]. 

Fig. 3 illustrates the ELM architecture, where it is evident 
that the input layer is linked to the intermediate layer via 
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randomly generated weights, represented as wi. Additionally, the 
intermediate layer connects to the output layer through weights 
denoted as βi, which are determined using the Moore-Penrose 
pseudo-inverse matrix. 

 
Fig. 3. ELM architecture, with i inputs, j hidden nodes, and n classes. 

The equation for ELM architecture is defined as H β = Y, 
where H is the output of the hidden layer, β is the unknown 
weights matrix, and Y is the targets matrix: 

𝐇 = ቎
𝑔(𝑤ଵ

்𝑥ଵ + 𝑏ଵ)⋯𝑔(𝑤ௗ
்𝑥ଵ + 𝑏ௗ)

⋮
𝑔(𝑤ଵ

்𝑥ே + 𝑏ଵ)⋯𝑔(𝑤ௗ
்𝑥ே + 𝑏ௗ)

቏ ∈ ℝே௫ௗ    (8) 

𝛃 = ൥
𝛽ଵ
்

⋮
𝛽ே
்
൩ = ൥

𝛽ଵଵ⋯𝛽ଵ௠
⋮

𝛽ேଵ⋯𝛽ே௠

൩ ∈ ℝே௫௠    (9) 

𝐘 = ൥
𝑦ଵ
்

⋮
𝑦ே
்
൩ = ൥

𝑦ଵଵ⋯𝑦ଵ௠
⋮

𝑦ேଵ⋯𝑦ே௠
൩ ∈ ℝே௫௠    (10) 

The solution for this system is defined as: 

β = H† Y   (11) 

where H† is the generalized Moore-Penrose inverse. 

III. PROPOSED METHODOLOGY 

A. Dataset 

To conduct our analysis, we employed a dataset accessible 
on the website of Case Western Reserve University [7]. This 
dataset encompasses a collection of files containing numerical 
data pertaining to bearing vibrations, recorded during both 
normal operating conditions and deliberately induced failure 
scenarios. Each file contains vibrational data corresponding to a 
distinct experimental condition. The files are categorized based 
on the specific region where the failure was induced, in addition 
to the diameter of the failure. The failures were deliberately 
introduced through mechanized electrical discharge at a single 

point, with diameters of 7 mil (0.1778 mm), 14 mil (0.3556 
mm), and 21 mil (0.5334 mm). 

The signals were acquired by sampling data from an 
accelerometer, positioned radially within a bearing, at a 
frequency of 12,000 samples per second. Our dataset comprised 
four distinct cases, encompassing a vibrational signal obtained 
from a healthy bearing, as well as signals stemming from 
bearings with deliberately induced failures in the inner race, 
outer race, and ball, respectively. 

B. Calculation of vector size 

To determine the appropriate length of each training vector 
input for the model, two criteria need to be considered [8]. 
Firstly, the input should have the smallest possible dimension to 
conserve model resources. Secondly, it should include the 
maximum amount of information to allow the network to extract 
characteristic biases while minimizing information loss. With 
these criteria in mind, a tool was employed to visualize the 
frequency spectrum of the signals in the database. This aimed to 
identify the frequency ranges that contain the most significant 
information. To accomplish this, a Python program was 
employed. It extracted 1000 samples from four vectors within 
the database and then applied the discrete Fourier transform. The 
resulting graph is depicted in Fig. 4. 

 
Fig. 4. Frequency spectra of Normal, 0.007”, 0.014”, and 0.021” databases. 

Drawing from the insights conveyed by Fig. 4, it was 
ascertained that a vector comprising 100 samples corresponds 
to a period of 83.3µs when subjected to a sampling frequency 
of 12kHz. Consequently, this yields a vector frequency of 
120Hz. Such a configuration adequately encompasses high-
frequency information existing beyond the 1000Hz mark. 

C. Methodology 

The entire procedure undertaken by our proposed system is 
illustrated in Fig. 5. This diagram encapsulates the full 
methodology, encompassing the training of the Case Western 
Reserve University database, signal conditioning as detailed in 
Table I, dimensionality reduction through a deep autoencoder, 
and the construction of the classifier using the Extreme Learning 
Machine algorithm (ELM). Each of these stages was simulated 
using the Python language within the TensorFlow platform and 
leveraged the Keras libraries for machine learning purposes. 
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Fig. 5. Proposed methodology.  

The dataset comprises single-row vectors, each containing 
over 100 x 103 samples. To facilitate the training process, it was 
imperative to disintegrate these vectors into arrays of 100 
sample vectors, as demonstrated in Table I, for the scenario of 
0.007 inches.  

TABLE I.  TRAINING VECTORS AND SAMPLES 

 

The deep autoencoder utilized for dimensionality reduction 
comprises the subsequent layers: an input layer with 100 
neurons and a linear activation function, followed by hidden 
layers consisting of 31, 10, and 3 neurons, respectively, utilizing 
the rectified linear activation function (ReLU). Finally, the 
output layer with 100 neurons employs the hyperbolic tangent 
as its activation function. This configuration of the autoencoder 
is depicted in Fig. 6. 

In order to establish a comprehensive measurement 
methodology, the encoder section was seamlessly integrated 
into the classifier, enabling predictions to be made in a single 
step. Figure 7 illustrates the proposed integrated methodology. 
This approach involves the encoder's role in compressing the 
information and generating a three-characteristic representation 
of the input. Subsequently, the ELM architecture leverages the 
output information from the three encoder neurons to predict 
their corresponding classes. 

IV. EXPERIMENTS AND RESULTS 

The model underwent training using files containing normal 
samples as well as failures of sizes 0.007", 0.014", and 0.021". 
In the initial phase, the encoder was trained to perform signal 
reconstruction. As illustrated in Fig. 8, the reconstruction for the 
0.007" case might not be completely precise, although the results 
are reasonably coherent. The reconstruction exhibits a level of 
differentiation between the datasets, and yet it is viable to 
achieve effective clustering of the data. The core concept is 
centered around reducing the vectors from a dimension of 100 
down to just 3 parameters. These parameters can be graphically 
represented in a three-dimensional plot, as portrayed in Fig. 9. 
They subsequently serve as inputs for the classifier. 

 
Fig. 6. Deep autoencoder model. 

 
Fig. 7. Integral architecture, including the encoder and ELM stages. 

 
Fig. 8. Original signal (blue) and reconstruction (red) for 0.007” failures. 

The ELM architecture was trained using the set of 3-
parameter vectors obtained from the encoder. To assess the 
performance of the integrated architecture, figures 10, 11, and 
12 depict the confusion matrices generated by the ELM 
architecture for both the healthy and failure classes of sizes 
0.007", 0.014", and 0.021", respectively. 

 Based on the information provided from the confusion 
matrices, it's evident that the accuracy ranges from 80% to 99%. 
These results are notably improved compared to the 
performance for four classes. Importantly, in the context of 
detecting failures in bearings, the specific type of failure might 
not be as critical as simply determining the presence of a failure. 

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:03:11 UTC from IEEE Xplore.  Restrictions apply. 



In this regard, your system appears to be performing effectively 
for this purpose. 

 
Fig. 9. Graph of the sets discerned by the encoder for 0.007” failures. 

 
Fig. 10. Confusion matrix for two classes and failure of 0.007”. 

 
Fig. 11. Confusion matrix for two classes and failure of 0.014”. 

 
Fig. 12. Confusion matrix for two classes and failure of 0.021”. 

 

V. DISCUSSION 

Concerning the accuracy of the autoencoder namely, the 
reconstruction error, which is not good, it is enough in the 
dimensionality reduction task as a source of data for the ELM 
classifier. Fig. 9 shows in a visual manner the separation 
between good and bad bearings, leading to acceptable 
classification values as presented in Figs. 10-12. The reduction 
of dimension to 3 was chosen because it allows visualizing the 
clustering of input data, otherwise, this analysis becomes 
cumbersome.     

VI. CONCLUSIONS 

In summary, the employment of autoencoders can 
significantly decrease the dimensionality of vector parameters 
within the data, thereby simplifying problems that involve a 
large number of features. This simplification in turn enables the 
implementation of the system on platforms like FPGAs or 
Raspberry systems. 

Machine learning techniques are highly appropriate for 
processing extensive amounts of information, making them 
valuable tools for extracting insights from Big Data. The fusion 
of a decoder stage and an ELM classifier yielded a unified 
measurement architecture. This integrated architecture was 
successfully simulated and exhibited satisfactory classification 
outcomes. 
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