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Abstract – In this work an initial approach and requirements 
overview is performed in order to promote awareness on the 
compatibility between CMOS – MEMS sensor devices design and 
the group of heuristic techniques known as genetic algorithms. As 
might be known, genetic algorithms (GAs) main application is in 
the field of multivariable functions optimization and this kind of 
iterative procedures in their simplest forms may be suitable to 
serve as a tool in the automation of design of integrated CMOS 
devices and technologies where the variables and restrictions are 
known. FGMOS-based devices along with MEMS structures when 
embedded in a single-chip platform (CMOS – MEMS technology) 
are expected to be in compliance with a set of design rules for both 
their mechanical and electrical properties, making easier to code 
and decode variables for their use in a GA in a discrete always-
positive basis. In this approach, parasitic and process-resolution-
related issues are neglected and further analysis based in a more 
detailed modeling and parameter restrictions is encouraged.  

Keywords – CMOS-MEMS, FGMOS, MEMS, Genetic 
Algorithm, floating-gate, capacitive MEMS. 

I. INTRODUCTION: FGMOS SENSORS REVIEW 

As seen in [1] and [2], floating-gate MOS transistors, well 
known for their charge-based memory-like behavior and 
capacitive properties, are suitable for the task of transducing the 
mechanical signal variations, as well as optical [3], chemical 
[4], etc., into electrical, mostly current-related, easily readable 
magnitudes. 

When it comes to a CMOS – MEMS architecture, especially 
for the case of capacitive accelerometers, the whole mechanical 
structure is framed by the many properties and constrains of the 
CMOS standard technology it is intended for and fabricated in, 
C5 OnSemi Process for this work.  

Elements such as proof masses and beam springs must meet 
this technology requirements. Beside this, FGMOS-based 
circuitry and MEMS cells working together are committed to 
handle signals changing between energy forms from the mere 
mechanical stimulus to electrical magnitudes. The relation 
between these two variables is called sensitivity (1) and its 
optimization is matter of further analysis in this document. 

 
(1) 

Expression (1) is a generally used definition of sensitivity 
[5] for devices and systems involving MEMS where  might be 
interpreted as the slope of the transfer function with  as the 
input stimuli and  as a function of . Furthermore, in the 
particular case of accelerometers  (or sensitivity of the 
accelerometer) may be stated as in (2) with a  dimension 
where G is the magnitude of the gravitational acceleration. 

 
(2) 

Fig. 1 provides a schematic of the basic double-gated 
FGMOS transistor setup coupled to a free-moving capacitance-
changing mechanism. In this example the floating gate, which 
is electrically isolated from other terminals, is induced to a so 
called floating electrostatic potential from two contributions, 
one of them varying proportionally to the acceleration (and 
subsequent displacement) in the MEMS structure and another 
from a conventional floating-gate setup serving as a tuning 
node for further adjustment of the operation conditions. Drain 
current can be directly measured or conditioned and transduced 
from a few  to about 2V in the drain node as it passes through 
a series resistor as seen in [6]. 

 
Fig. 1. Basic configuration of the FGMOS-based accelerometer. 
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Fig. 2. Layout for a FGMOS in scalable CMOS standard processes. 

In Fig. 2 the layout for a conventional floating-gate 
transistor is depicted. The integrated device contains all of its 
fundamental terminals including drain, (floating) gate and 
source plus a control gate and a connection to the capacitive 
MEMS main structure. As usual in CMOS technology, all of 
these elements and terminals are defined in terms of a minimum 
topological unit, a longitudinal parameter called  which also is 
the magnitude of resolution for a given technology as all 
dimensions in the planar design (from a top view) are exact 
multiples of this minimum step. In the C5 OnSemi Process, 
commercialized as a  technology, the effective  is 
actually , as the name of a CMOS fabrication process is 
given by a number close to but not necessarily exactly  which 
corresponds to the minimum channel length of the MOS 
transistor. Therefore, it is noticeable that every dimension in the 
topological design, e.g. gate length and width, poly to poly 
capacitor area’s length and width, etc. are an integer multiple of 

 so all of these parameters can be coded to and decoded from 
a binary integer in form of a string  bits long. Table 1 
summarizes the principal topological variables involved in the 
basic FGMOS device as long as equation (3) represents the 
(simplified) transconductive behavior of the conventional MOS 
transistor in saturation and expression (4) the approximate 
FGMOS model including the effective floating potential  
(5) and coupling factor  shown in (6) and neglecting some 
parasitic capacitance effects. 

 

(3) 

 

(4) 

 
(5) 

 

(6) 

Where  is the channel width,  is the channel length,  
is the NMOS transconductance parameter related to electron 
mobility,  is the threshold voltage for the MOS transistor,  
is the couple factor for a given capacitive structure,  is the 
upper capacitive structure, either poly to poly or MEMS for the 
i-th floating gate and  is the gate capacitance below the 
floating gate. Properties in Table 2 must be taken into account 
as they are applicable to parameters above in order to meet 
compliance with the fabrication rules set [7].  

Upper limits in Table 2 are strongly limited by the design 
area (and the budget) but also any device is desired to be 
“small” so the largest number of test cell may be included in a 
single-chip project.  is directly related to specific proof 
masses geometries as can be seen in [8] where the dynamic 
mechanical system is integrated taking advantage of the 
interconnection metal layers 1, 2 and 3 from the C5 Process [9]. 

II. BASIC PROPERTIES OF GENETIC ALGORITHMS 

Genetic Algorithms and Evolutionary-Computation-related 
techniques are included in the group of the so called bio-
inspired metaheuristic. In general, genetic algorithms are well 
known as powerful tools to solve linear and non-linear many-
variable problems.  

 
Param Name Related to: 

 Channel width oxide capacitance, device 
transconductance 

 Channel length oxide capacitance, device 
transconductance 

 Floating gate Poly1 area 
width 

coupling factor, floating 
potential 

 Floating gate Poly1 area 
length 

coupling factor, floating 
potential 

 Control gate Poly2 area 
width 

coupling factor, floating 
potential 

 Control gate Poly2 area 
length 

coupling factor, floating 
potential 

 MEMS Structure 
Capacitance 

mass-spring system 
displacement, coupling factor, 
floating potential 

Table 1. Design parameters 

Param Minimun Maximum Units 

 10 -  

 2 -  

 10 -  

 10 -  

 6 -  

 6 -  

 - -  
Table 2. Feasibility due to fabrication limitations. 
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Even in its simpler form a GA can, with relative ease, handle 
optimization problems with more than a hundred variable 
parameters. Most of the proposed models and objective 
functions  to analyze in a computer science 
environment are especially designed as benchmarks and are not 
necessarily representing a real-world problem. Engineering 
conventional problems usually include a few dozens of 
variables. In this context, one variable corresponds to one gene, 
and gathering all the variables together is similar to have a 
chromosome with every aspect of the solution within. 

 
  As expected, a GA is a computational interpretation of 

how across the generations the information in DNA adapts 
itself to fulfill as much as possible the problem’s best solution, 
that said, the implementation in hardware and/or software 
requires of a group of considerations which include but is not 
limited to: 

 
1. A representation method: a mechanism to code a group 

of numerical variables of any kind to a composite of 
data, usually a single binary string as seen in Fig. 3, and 
decode it back. 

2. A selection method: a strategy to pick one or more 
solutions of many possible (the population) to assign 
them privileges, penalization or to perform operations 
between them. 

3. Modeling of the crossover (recombination) of two 
solutions, also called individuals: A procedure to 
recombine them looking for an even better solution. A 
high crossover rate controlled by a crossover 
probability  is desirable as its effect resembles 
the interpolation process. 

4. Modeling of mutation: Randomly changing some of the 
values in the coded strings. A low mutation probability 

 is desirable to ensure diversity among the 
population without affecting the convergence tendency 
to optimal solutions.  

5. Modeling of elitism: A mechanism to ensure the 
survival of the best individuals from a given generation 
to the next. 

 
Is not subject of the present work to deeply analyze the complex 
theoretical issues, advantages and drawbacks of GA’s but to 
overview the MEMS-oriented FGMOS design from that point 
of view. Previous works in related fields such as [10], [11] and 
[12] fields have successfully translated philosophy of 
evolutionary computation to MEMS design. 
 

 
Fig. 3. Gene and chromosome interpretation. 

We point out that most of microelectromechanical systems 
are actually developed and fabricated in dedicated MEMS 
technologies with a variety of rules and tolerances others than 
those available in CMOS – MEMS joint technology and 
process. The pseudocode shown below, in terms of a population 

 is a genetic algorithm based on the ideas proposed by Holland 
in 1975 [13] and the one this work takes as an example. 

 
 

 
 

 

 

 
 
During the execution of this algorithm we may pay special 
attention to the historical values of fitness of every member of 
the population so convergence mechanisms, such as elitism, can 
be implemented. The fitness value of an individual comes from 
evaluating a dedicated function carefully designed to represent 
compliance with the optimization objectives. 
 

III. VARIABLES REPRESENTATION AND TESTING 

As seen in [8], capacitance values for a CMOS – MEMS 
structure designed and built in a comprehensive area can reach 
about  in non-accelerated conditions  and variation 
up to  in . Combining these results with expressions 
(3-6), drain current of the FGMOS is obtained (7). 

 

 
(7) 

 
Where  and  are constants for the fabrication process 

and its base technology,  and  are in terms of  and  
and ,  are source supplied voltages others than  that 
can be proposed or calculated even during the GA itself. 
Assuming  to be fairly linear and proportional to 
displacement  in [8], we can redefine (2) as (8) and (9) and 
look for an optimal combination of parameters , , , , 

, ,  and  that maximizes  regarding (10). 
 

 
(8) 

 

 
(9) 

 

 
(10) 
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var min max codec length 

 10 50  6 bits 
 2 10  4 bits 

 10 40  5 bits 
 10 40  5 bits 
 6 30  5 bits 
 6 30  5 bits 
 0.01 3.30  9 bits 
 0.01 3.30  9 bits 

Table 3. Variables codification. 

For the purposes of applying the GA, every variable 
parameter must be coded into a binary string according to their 
range and desired resolution. Table 3 summarizes the 
codification characteristics. All strings corresponding to each 
variable are concatenated into a single string with a total of 48 
bits, where  is the number of times to multiply the layout 
resolution  for a given length and  is a multiple of  as 
well. Evaluation of this 8-variable for all allowed combinations 
would generate a matrix with about 24 trillion values, so that a 
direct search method for maxima is not convenient. 

The GA was implemented and tested for 1000 generations 
and varying between populations of 100 and 200, crossover 
probabilities of 0.6, 0.7 and 0.8 and mutation probabilities of 
0.01 0.05 and 0.1. As expected, higher mutation rates and larger 
populations keep mean fitness lower. In terms of the GA, the 
procedure included single-point crossover, death penalty 
(fitness = 10) for infeasible individuals and integration of the 
elitist individual within the next generation. Three of the 
executions with the highest fitness function evaluation are 
shown in Fig. 4, Fig. 5 and Fig. 6 (mean fitness dashed line).  

Resulting parameter values leads to a drain current  in the 
FGMOS in the order of  which is suitable to work with 
the integrated amplifier proposed in [6]. Table 4 reports average 
parameter results. 

 
Fig. 4. Pop: 100, Pc: 0.7, Pm: 0.01, maxfitness: 82.22, average fitness in the 

population presents large variations across generations. 

 

Fig. 5. Pop: 200, Pc: 0.7, Pm: 0.01, maxfitness: 83.19. Mean fitness settles a 
mid-range indicating more diversity among individuals in the population.   

 

Fig. 6. Pop: 200, Pc: 0.8, Pm: 0.05, maxfitness: 82.71. At higher mutation fast 
convergence issues may appear even when the mean fitness stays low, this is 

critical when it comes to a problem with many local optimal points. 

var min max computed (avg) units 
 3 15 12  
 0.6 3 0.6  

 3 12 9.9  
 3 12 6.9  
 1.8 9 5.4  
 1.8 9 2.4  
 0.01 3.3 3.3  
 0.01 3.3 3.3  

Table 4. Computed parameters. 

IV. CONCLUSIONS 
Knowing genetic algorithms nowadays are capable of 

solving way harder computational problems, this exercise is not 
intended to represent any advantage more than adding an 
automation and design validation tool to the analysis of 
FGMOS-based CMOS-MEMS devices.  
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Since a few of the computed parameters settled down to 
extreme values within their allowed ranges, it is convenient to 
revisit how the contribution of them affects to the global model, 
not discarding the possibility to take one or more of these 
variables down to their most fundamental modeling, deeply 
related to the physical process that take place to form the 
transistor. The optimization and design automation of complex 
digital and mixed-signal systems where the application itself is 
bio-inspired might be challenging and a fertile research field. 

 
A major suitability advantage we identified and reason to 

keep GA’s in mind, is related to memory handling for the 
variables and the computational cost of a direct search method. 
Even if this single-transistor example were reduced to 5 or 6 
variables, the search space is so big, such that a direct search 
method would require instances larger than hundreds of 
megabytes to be computed. In the other hand, a typical 
execution of the basic GA with a random initial population of 
about 100 individuals is expected to last no longer than a couple 
of minutes.   

 
We assume fairly convenient to take advantage of the 

perspective and philosophy of GA’s from which we highlight 
the codification process that allowed us to work on the solution 
in a different space other than the conventional VLSI design. 
This vision might be complemented with a solid knowledge in 
other bio-inspired metaheuristics. 

V. FUTURE WORK 
As summarized in the conclusions of this work, a way to 

find new features and put to the test the compatibility of GA’s 
and CMOS – MEMS design, is to evaluate circuit models way 
higher in complexity, where up to a few hundreds of variables 
and parameters shall be resolved to their optimal values. 

 
Might be interesting to link the MEMS and VLSI design 

duties with combinations of GA's and other heuristics such as 
Fuzzy Logic and Artificial Neural Networks in order to obtain 
the optimal parameters knowing not the mathematical model 
but the desired behavior. 

 
Investigation on hardware implementation (HDL) and its 

automated translation to CMOS layout is also desirable. 
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