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Abstract—This work presents an analog model for a cellular
membrane of a neuron as well as its mathematical analysis. The
simple model of a spiking neuron from Izhikevich is used to
design two neural architectures. From the electrical analysis the
synaptic current is obtained and used as an input parameter to
the Izhikevich’s model. The first architecture has two neurons
on the input layer and one on the output layer, using this
architecture it is shown that the neuron models based on the
behavior of biologic neurons can be used in a similar manner
to the well-known second generation neural networks to solve
classification problems. Moreover, in the present work it is shown
the superiority of the spiking neuron models, which leads to the
second architecture to be conformed by a single neuron. Both
architectures are compared performance wise, through the classic
problem of separating a non-linear dataset, XOR. The results
show that these architectures can be used to the classification or
clustering of patterns of features.

Index Terms—Izhikevich neuron model, spiking neural net-
work, membrane mathematical model, neural architecture, XOR
problem, metaheuristics, EABC algorithm.

I. INTRODUCTION

T
he artificial neural network models have always had

the objective of approaching the behavior of biological

neurons, thus simple models have been produced to describe

such functioning, these models try to emulate the communi-

cation process through synapses and the synaptic plasticity

by which the existing relations are modified. From [1], [2],

neural networks can be classified in 3 generations. The first

generation of neural networks are those that follow the neuron

model proposed by McCulloch-Pitts [3] which is based on a

simple processing unit known as perceptron. These neurons

are activated when a threshold value is surpassed and, one

characteristic of this model is that the output is either 0 or

1. The second generation of neural networks consists of two

computation units, namely one which sums the synaptic inputs

and the second one which is represented by an activation

function and generates the output. The activation functions

can be linear, sigmoidal, hyperbolic or any other that defines

a range of values as output. The third generation of neural

networks approaches better the behavior of biological neural

networks most of the time. These networks occupy models to

reproduce the train pulses commonly present in the biolog-

ical networks to communicate them. Many studies of these

networks appeared in the last years given the accumulated

evidence that pointed to the fact that biological neurons use

dynamic membrane potentials, also known as spikes, to encode

and process information. The XOR problem, is widely used

because it is an example of a non-linear separable problem [4],

[5]. Some solutions propose using spiking neural networks

(SNN). Comsa M. et. al [5] proposed an SNN architecture

based on the membrane cellular model known as Spike

Response Model (SRM), [6]. The SRM model is a simpli-

fied model proposed by Hodgkin-Huxley, which considers

the membrane potential. This work shares a similar idea to

perform the electrical analysis of the membrane potential and

its behavior is described mathematically. The SRM model can

be considered not so practical due to its bad behavior when the

threshold value is surpassed. When this happens, the neuron

enters into a standby state that does not produce an output

spike as expected, that is why for this work the model proposed

by Izhikevich [7], [8] is considered.
In this work, the Efficient Artificial Bee Colony or EABC

metaheuristic optimization method has been used to compute

the synaptic weights of the proposed architectures. In [9], it is

shown the excellent performance of the EABC in finding the

solution parameters with and without restrictions. This favors

its application in this work.
This model approximates better the biologic behavior and it

is computationally less complex. As a consequence of trying

to demonstrate the superior capacity of the biological neural

models it is shown that a single spiking neuron can solve

complex problems and grouped can be used to solve data

separation problems.

II. METHODOLOGY

A. Electrical model of the cellular membrane

This section will explore the biophysical mechanism behind

the generation of neural activity. Thus, the biological and

electrical representation will be described. Fig.1 shows an

electrical diagram which is an analog representation of the

components on a neuron [10]. The positive and negative

signs, surrounding the membrane represent charges inside

and outside it. Moreover, both the electrical resistance and

capacitance associated to the membrane are represented too.

Finally, the external current contribution is also represented

through the electrode Ie.
The total capacitance and resistance of the membrane are

represented by Cm and Rm, respectively. The membrane

capacitance is represented as cm and a typical value is

cm ≈ 10 nF/mm2. So, to calculate Cm the below equation

is used.
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Fig 1. Analogous representation of a neuron cell. Based on [10]

Fig 2. RC circuit equivalent to the neuron membrane. Based on [10]

Cm = cmA (1)

In a similar manner rm ≈ 1MΩ ·mm2. The total resistance

of the membrane is calculated using (2).

Rm = rm/A (2)

In Fig.1 Ie is a small current which is injected using

an electrode. If Ohm’s law is applied, ∆V = IeRm then

the electric neuronal activity is obtained only if the injected

current is applied at regular time intervals. When this current

is stopped then the cell will reach a relaxing state also known

as equilibrium state. In this way, the membrane current can be

known. This current is determined in its totality by the opening

and closing of the sodium and potassium ionic channels. The

total current on the membrane is determined by the sum of

currents. They are due to the difference between opening and

closing ionic channels, and this phenomenon leads also to a

synaptic potential.

The total current present on the membrane is obtained

multiplying im by the cell’s surface, this can be appreciated

with (3).

Im = imA (3)

Hodgkin and Huxley presented a model that mainly con-

siders sodium and potassium ions, but they expressed the

possibility of existence of other ion types [11]. In (4), gi is

the specific conductance due to the ionic channels and Ei is

the equilibrium potentials associated with the ion channels that

are considered.

im =
∑
i

gi (V − Ei) (4)

In Fig.2. a RC model electrically equivalent to the mem-

brane is presented. Where cm and rm represent the capacitance

and resistance of the membrane respectively, EL denotes the

equilibrium potential of the neuron and Ie is an external

injected current. Table I shows the typical values considered

for this model.

Table I
MEMBRANE PARAMETERS

Parameter Typical value

cm ≈ 10nF/mm2

rm ≈ 1MΩ ·mm2

Cm cmA
Rm

rm/A
EL −70mV

Fig 3. Membrane potential. Dashed line: τm=10ms, solid line: τm=20ms.
For both graph Vss = 50mV and EL = −70mV .

For the proposed RC circuit, we should consider its behavior

through time generating (5), (6) and (7). With these equations

it is possible to obtain the value of the current which is time de-

pendent. Considering (6) the right-hand expression is obtained

using the Kirchhoff-law of currents sum. The negative sign on

the first factor points to an inverse current with respect to the

analysis of node V . The left part represents the current derived

from the variation of the membrane capacitance through time.

i = Cm

dv

dt
(5)

cm
dV

dt
= −

(V − EL)

rm
+

Ie
A

(6)

τm
dV

dt
= − (V − EL) + IeRm (7)

In (7), we multiply rm on both sides of (6) we would have

τm = rmcm = RmCm, which τm is the time constant of the

membrane and plays an important role determining how fast

a neuron cell reacts on changes to the input. Therefore, a big

τm implies a slow response and a small τm represents a fast

response of the neuron, refer to plot in Fig. 3 Vss is the value

of the neuron in a stable state with an input current and is

calculated using (8). When the external current stops flowing

the potential decreases to its equilibrium state EL.

Vss = EL + IeRm (8)

Until this point it has only considered the behavior of the

cellular membrane, however, for this work it is important to

analyze the presence of a synaptic potential and how this

modifies the cellular behavior, therefore the behavior shown



Fig 4. Equivalent RC circuit with synaptic conductance. Base on [10]

Fig 5. Synaptic response AMPA & GABAA

on the RC model will be enriched with the presence of the

synapses. The synaptic presence modelled as a conductance is

expressed by (9) and presented on Fig. 4

τm
dV

dt
= − ((V − EL) + gs (V − Es) rm) + IeRm (9)

In (9), it is important to determine the value of the synaptic

conductance considering the opening of the ionic channels;

for this condition it will be considered the probability of

the channels being opened or closed at a certain point in

time. With that in mind, expression (10) is obtained, gs,max

represents la conductance associated to the synapses, Prel,

is the probability of generating an output spike due to the

presence of an input spike and Ps is the probability of opening

of the postsynaptic ionic channels. The relation between Ps

and Prel can be seen on the Fig. 5. In that figure the

behavior of two receptor types of chemical synapses through

time (AMPA,GABAA) can be appreciated. Equation (11)

expresses the form of the AMPA (a-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptor) synapses and (12)

does the same with the GABAA (gamma-aminobutyric acid

receptor) synapses. τpeak is the time that elapses after a pulse

has been given at the input and the maximum value of the

function (12) is reached. In Fig. 3 τpeak = 2.7ms.

gs = gs,maxPrelPs (10)

K (t) = e−
t
τs (11)

α (t) =
t

τpeak
· e

(

1− t
τpeak

)

(12)

Previous equations have considered the presence of a single

spike, however, a closest approach to the biological behavior

should consider the presence of spike trains at the input.

Concerning the presence of multiple spikes (See Fig 6.), leads

to equation (13) from which the set of discrete values ti are

a) b)

Fig 6. a) Pre-synaptic and post-synaptic neuron. b) Over time representation
of the conductance variance.

Fig 7. Neuron with multiple synapses input.

the points in time associated to spikes presence. δ is the Dirac

function which means that only the spike’s generation time is

taken into account.

ρa (t) =
∑
i

δ (t− ti) (13)

The synaptic conductance at the input of a neuron is

calculated using (14). This equation models how synaptic

conductance changes on the post-synaptic neuron. Basically,

it represents the sum of all the multiple functions (11) or (12),

associated with spikes present in the pre-synaptic neuron.

A representation of how an input spike train modifies the

conductance ga through time, is presented on Fig 6. b)

ga (t) = ga,max

t∫

−∞

K (t− τ) ρa (τ) dτ (14)

Now, considering that a neuron can have connections to

multiple synapses, this is represented in Fig. 7

For this case the total synaptic current of a neuron is

calculated by the expression in (15), in which it is per-

formed the summation of the synaptic contribution, where

the subindex b represents specific synapses connected to the

neuron. Using (14), the total dynamic synaptic current on the

neuron is expressed by (16). Where the parameter w represents

the synaptic weight. Equation (17) approaches (16), where

(ub (τ)) takes into account the discrete values in time of the

instantaneous spikes.

Is (t) =
N∑
b=1

Ib (t) (15)

Is (t) =

N∑
b=1

wb

t∫

−∞

K (t− τ) ρb (τ) dτ (16)



Is (t) ≈

N∑
b=1

wb

t∫

−∞

K (t− τ)ub (τ) dτ (17)

Equation (17) leads to (18), where K (t) = 1

τs
e−

t
τs and τs

represents the neuron change rate when is in the presence of

the input currents of each synapses. Equation (19) represents

the complementary variable in this systems namely, the spike

voltages; where the function F (.) relates current and voltage.

An alternative manner to represent (18) is using (20), where

the synaptic weights are contained by the matrix W and the

input current by the vector u. Finally, the equations (21) and

(22) formulate the steady state of the spiking neurons.

τs
dIs
dt

= −Is +
∑
b

wbub (18)

τr
dv

dt
= −v + F (Is (t)) (19)

τs
dIs
dt

= −Is +W · u (20)

0 = −Is +W · u (21)

V = F (W · u) (22)

B. Izhikevich Neuron Model

Izhikevich [7], [8] proposes a neural model that reproduces

the spikes of cortical neurons. This model combines the

biological plausibility of the Hodgkin-Huxley model and the

computational efficiency from the integrate and fire model.

The equations of this model are expressed on (23), (24) and

(25).

C
dv

dt
= k (v − vr) (v − vt)− u+ I (23)

du

dt
= a (b (v − vr)− u) (24)

if v ≥ vpeak ⇒ v = c, u = u+ d (25)

The parameters in Table II are the following: v is the mem-

brane voltage, u is the recovery current, C is the membrane

capacitance, vr sis the resting membrane potential and vt, is

the instantaneous threshold potential. The constant a is the

recovery time and, the sign of b, which is another constant,

determines if u is an amplifying or resonant variable. The con-

stant c describes the after-spike reset value of the membrane

potential v caused by the fast high-threshold K+conductances,

and d describes after-spike reset of the recovery variable u
caused by slow high-threshold Na+and K+ conductances [7],

[8].

The neural model can be modified based on four parameters

achieving different configurations on the pulse generation

response. In Fig. 8, it is presented the different choices of pa-

rameters on each configuration. The present work reproduces

the behavior of a “regular spiking” (RS) configuration (see

Table II).

The parameter I in (23), is obtained from (21) considering

the input values and their corresponding synaptic weights.

Fig 8. Selection value of parameters from Izhikevich model. From [7]

Table II
PARAMETER VALUES OF IZHIKEVICH’S MODEL

Parameter Value

a 0.03
b −2
c −50
d 100
vr −60
vt −40
C 100
k 0.7

vpeak 35

Morales de-la-Rosa [12] observes that the Izhikevich model

can generate pulses with current values above 50pA.

C. Feedforward Neural Network

With the previous definitions it can be modelled feedforward

neural networks, like those in Fig. 9 Where Sy represents

the synaptic input. In the Izhikevich neuron model and w the

synaptic weights. In Fig. 9b), it is presented an architecture

traditionally used by the second generation neural networks

with the purpose of showing that it is possible to have a

similar architecture with third generation neural networks,

achieving the solution of non-linear problems, like the XOR

problem. However, the models based on the third generation,

have shown to be robust compared to the second-generation;

the present work shows this by solving the XOR problem

using a single neuron. Based on (22) two functions have

been considered to obtain the membrane voltage. One function

with radial basis functions (26) applied to the architecture on

Fig. 8b) and a second polynomial function, presented in (27),

applied to the architecture on Fig. 8a.

I = e
−

f
x−w′

f
2

2σ2 + η (26)

I = (x · w′ + 1)
p
+ η (27)

In (26) and (27), η is an offset current for supporting the

generation of spikes. Its value in the next experiments was

55pA.

Using the results developed so far, a feedforward neural

architecture can be implemented to classify patterns.



a)

b)

Fig 9. Feedforward neural architecture. a)Architecture “A”, b)Architecture
“B”

Table III
ARCHITECTURES RESPONSE.

SY 1 SY 2 Arc. “A” Arc. “B”

0 0 3 spike 2 spike

0 1 2 spike 3 spike

1 0 2 spike 3 spike

1 1 3 spike 2 spike

III. RESULTS

A representative spiking response of the architectures “A”

using Izhikevich neuron model is shown in Fig.10. The synap-

tic input values Sy1, Sy2 and its output the number of pulses

generated by the output neuron are presented in Table III.

In Fig.11, it is shown a 3D plot of the behavior of the

neural architecture when its values on the synaptic inputs

are varied. For this graph, the X axis corresponds to the

synaptic input Sy1 and the Y axis to the input Sy2. The

Z axis is the number of generated pulses at the output of

the architecture. In Fig.11a) it is shown the isometric view

and Fig.11b) is the upper view of the neural architecture “A”

output response. It is important to note that in this architecture

a polynomial function (27), has been applied as activation

function; therefore, the transition from one type of response

to the other is determined by a straight line.

Fig.12 and Fig.13 show the results obtained when the neural

architecture “B” is considered. In this scenario, the radial basis

function (26) is used. It is important to note that the transition

between responses correspond to a radial basis function.

The values for the weight matrix W in (21), has been cal-

culated using the metaheuristic optimization EABC algorithm

[9] and results obtained for both neural architectures are shown

on Table IV. The values for the synaptic weights have been

calculated using the mean value over 100 executions of the

ABC algoritm. These results express the feasibility of the

presented architectures.

IV. CONCLUSION.

In this work, an electrical model of the neuronal cell

membrane was presented, and a mathematical analysis was

performed to determine the synaptic current at the input.

The calculated synaptic current was used as an input pa-

rameter on the Izhikevich neuron model. Two architectures

were shown, both of them are able to solve a non-linear

separation problem (XOR). The first neural architecture “A”

a) b)

c) d)

Fig 10. Architecture “A” response with synaptic input.

a) b)

Fig 11. Architecture “A” response 3D graphics. a) Isometric view, b) Upper
view

a) b)

c) d)

Fig 12. Architecture “B” response with synaptic input.



a) b)

Fig 13. Architecture “B” response 3D graphics. a) Isometric view, b) Upper
view

Table IV
SYNAPTIC WEIGHTS CALCULATED USING EABC ALGORITHM.

Efficient ABC algorithm

Parameter Value

N 100

L 100

Max. Iter. 1000

ui 0

li 100

Architecture “A”

w01 -0.9001

w10 -0.9002

Architecture “B”

w01 0.0012

w02 0.0009

w11 0.9996

w12 0.9991

w21 1.9992

w22 1.9995

shows that third generation neurons have similar capabilities

with second generation architectures. The second neuronal

architecture B, is comparable with the biological neurons, due

to its ability to solve non-linear separability problems. Thus,

this work shows that these type of neurons can be used to

solve clustering problems on patterns of features with static

inputs. The numeric results obtained express the feasibility of

more architectures different from those presented in this work,

and open the possibility to work with more complex datasets.
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