

Physical Sensors, Sensor Networks and Remote Sensing

Sergey Y. Yurish Editor

Physical Sensors, Sensor Networks and Remote Sensing

Book Series: Advances in Sensors: Reviews, Vol. 5

International Frequency Sensor Association Publishing

Sergey Y. Yurish Editor

Physical Sensors, Sensor Networks and Remote Sensing Advances in Sensors: Reviews, Vol. 5

Published by International Frequency Sensor Association (IFSA) Publishing, S. L., 2018 E-mail (for print book orders and customer service enquires): ifsa.books@sensorsportal.com

Visit our Home Page on http://www.sensorsportal.com

Advances in Sensors: Reviews, Vol. 5 is an open access book which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the authors. This is in accordance with the BOAI definition of open access.

Neither the authors nor International Frequency Sensor Association Publishing accept any responsibility or liability for loss or damage occasioned to any person or property through using the material, instructions, methods or ideas contained herein, or acting or refraining from acting as a result of such use.

ISBN: 978-84-09-03028-6 e-ISBN: 978-84-09-03029-3 BN-20180730-XX BIC: TJFC

Acknowledgments

As Editor I would like to express my undying gratitude to all authors, editorial staff, reviewers and others who actively participated in this book. We want also to express our gratitude to all their families, friends and colleagues for their help and understanding.

Contents

Contributors	7
Preface	3

Chapter 1

Surface Plasmon Resonance Sensors: Fundamental Concepts, Selected	
Techniques, Materials and Applications	25
1.1. Introduction	25
1.2. Maxwell's Equations at Metal/Dielectric Interface: A Tutorial	26
1.3. Sensor Development	. 31
1.4. Simulations	
1.4.1. Fresnel's Equations and MATLAB	32
1.4.2. The Noble Metal Thin Film Sensor	33
1.4.3. Bimetallic (Ag/Au) Sensors	35
1.4.4. Waveguide-Coupled Ag/Si ₃ N ₄ /Au Structures:	36
1.4.5. Electric Field Simulations	39
1.4.5.1. Evanescent Fields for Single-Metal Sensors	39
1.4.5.2. Evanescent Fields for Bimetallic Sensors	40
1.4.5.3. Evanescent Fields for Waveguide Coupled Sensors	41
1.4.5.4. Comparison of Evanescent Electric Fields for Single Metal, Bimetal,	
and Waveguide-Coupled Multilayer Structure Sensors	42
1.5. Experimental	43
1.5.1. Sensor Structures	43
1.5.2. Measurement Techniques	44
1.5.2.1. The Kretschmann-Otto $(\theta, 2\theta)$ Goniometer Optical System with Prism Coupling	44
1.5.2.2. The Kretschmann Optical System without Goniometer (A <i>Fixed Detector</i> System)	46
1.5.2.3. Grating Coupling	4/
1.0. Comparison between Simulations and Measurements	48
1.7. Selected SPR Sensor Platforms	30
1.7.1. Sensor for Liquid-Crystal Alignment and Periodic Structure on Surfaces	50
1.7.2. Sensor for Surface Defects	30
1.7.4. SDD Sensors for Distachalogy Applications	00
1.7.4. SFR Sensors for Diotechnology Applications	00 66
1.0. Concusions	. 00
Acknowledgments	0/
Kejerences	0/

Diamond Detectors with Graphite Contacts	
2.1. Introduction	
2.2. Localized Phase Transformation of Diamond	80
2.2.1. Thermal Modification	
2.2.2. Ion-Beam Processing	
2.2.3. Laser Induced Surface and Bulk Transformation	
2.2.3.1. Two-Dimensional Detectors with Laser Induced Graphite Electrodes	
2.2.3.2. Three-Dimensional Detectors with Laser Induced Bulk-Graphite Pillars	91

2.3. Concluding Remarks	
Acknowledgements	
References	

Interferometric Photonic Crystal Fiber-Optic Gyroscope	
3.1. Introduction	
3.1.1. Solid-Core Photonic Crystal Fiber Optical Gyroscope (SC-PCFOG)	
3.1.2. Hollow-Core Photonic Crystal Fiber Optical Gyroscope (HC-PCFOG)	
3.2. Photonic Crystal Fiber and Components	
3.2.1. Photonic Crystal Fiber for FOG Application	
3.2.2. Photonic Crystal Fiber Coupler	
3.3. Nonreciprocity Error and Noise in PCFOG	
3.3.1. Backward Secondary-Wave Coherence (BSC) Error	
3.3.1.1. BSC Error Principle	109
3.3.1.2. Measurement of BSC Error	111
3.3.1.3. Suppression of BSC Error	112
3.3.2. Reflection-Induced Noise	
3.4. Prototypes of PCFOG	113
3.5. Conclusions	115
Acknowledgements	116
References	116
v	

Chapter 4

Designs of Capacitance Sensor for Holdup Measurement	
in Two-phase Flow: A Finite Element Analysis	
4.1. Introduction	
4.2. Designs of the Capacitance Sensor	
4.2.1. Concave Configuration	
4.2.2. Helical Configuration	
4.2.3. Ring Configuration	
4.3. Methods	
4.3.1. Modelling of Two-Phase Flow	
4.3.2. Evaluation Criteria of the Capacitance Sensor	
4.3.2.1. Sensitivity	
4.3.2.2. Linearity of Response	
4.3.2.3. Dependent Level of Phase Distribution	
4.3.3. Setup Parameters of Two-Phase Flow	
4.4. Results and Discussion	
4.4.1. Analysis of Concave Configuration	
4.4.2. Analysis of Helical Configuration	
4.4.3. Analysis of Ring Configuration	
4.4.4. Comparison between the Configurations	
4.5. Conclusion	
References	
-	

An Overview of Sensors for Low-Milliliter Hydrodynamic Applications	
such as Hydrocephalus	
5.1. Objective	
5.2. A Brief History of Shunts	
5.3. Introduction to Sensitive Sensors	

5.4. Capacitive Sensors	140
5.5. Capacitor Details and Assembly	144
5.6. Experimental Apparatus and Its Variations	146
5.7. Double-Membrane Sensors	149
5.8. Single-Membrane Sensors	151
5.9. Angstrom-Sensitivity of the Sensors	153
5.10. Temperature Dependence	155
5.11. Conclusions	157
References	158

Silicon Micro Piezoresistive Pressure Sensors	
6.1. Summary	
6.2. State of the Art Silicon Pressure Sensors	
6.2.1. Piezoresistive Effect	
6.2.2. Selected Manufacturing Technologies Silicon Pressure Sensors	
6.2.2.1. Silicon Doping	
6.2.2.2. MEMS Micromaching	
6.2.3. Piezoresistive Silicon Pressure Sensors - State of the Art	
6.2.3.1. Most Common Types of Piezoresistive Silicon Pressure Sensors	
6.2.3.2. Signal Conditioning for Silicon Piezoresistive Pressure Sensors	
6.2.4. Packaging for Silicon Piezoresistive Pressure Sensors	
References	

Carbon Black/Polydimethylsiloxane Electrodes for Underwater Cardiac	105
Electrical Activity Collection	185
7.1. Introduction	185
7.2. Materials and Methods	187
7.2.1. Fabrication of Copper Mesh CB/PDMS Electrodes	
7.2.2. Characterizing the CB/PDMS Electrodes	187
7.2.2.1. Electrode-Skin Contact Impedance Measurements	
7.2.2.2. Mechanical Properties of CB/PDMS Electrodes	
7.2.2.3. Cytotoxicity Test of Copper Mesh CB/PDMS Electrodes	189
7.2.3. Performance Evaluation of ECG Measurements Underwater	191
7.2.3.1. Signal Processing	191
7.2.3.2. Copper mesh CB/PDMS vs. Other Dry Electrodes in Fresh, Chlorinated,	
and Salt Water	193
7.2.3.3. Performance in Long Term Underwater ECG Recordings	195
7.3. Results	196
7.3.1. Electrode-Skin Impedance Measurements. CB/PDMS vs. Other Dry Electrodes	196
7.3.2. Mechanical Properties after Aging in Aqueous Environments	
7.3.3. Cytotoxicity Test	
7.3.3.1. Copper Mesh CB/PDMS Electrodes	
7.3.3.2. Cytotoxic Effect of Electrodes on L929 Cells	198
7.3.3.3. Cytotoxic Effect of Electrodes on NHEK Cells	
7.3.4. Performance of CB/PDMS Electrodes Underwater	
7.3.4.1. Copper Mesh CB/PDMS vs. Other Dry Electrodes in Fresh, Chlorinated,	
and Salt Water	200
7.3.4.2. Performance of CB/PDMS Electrodes in Long Term Underwater ECG Record	ings204
7.4. Discussion	
7.5 Conclusions	209
References	209
10000 010000	

Chapter 8	
Lithium Batteries Monitoring with Fiber Bragg Gratings	
8.1. Introduction	
8.2. Theoretical Considerations	
8.3. Sensors Fabrication	
8.4. Li-Ion Polymer Battery Monitoring	
8.5. Coin Cell Monitoring	
8.6. Li-Ion Pouch Cells Monitoring with Integrated FBG Sensors	
8.7. Final Remarks	
Acknowledgements	
References	

Optoelectronic Design of a 2045 m Coil, Closed Loop-Based, Depolarized	
IFOG with Square-Wave Bias and Sawtooth-Wave Feedback Optical Phase	
Modulations: Parametric Modeling, Simulation and Performance Test	231
9.1. Introduction	231
9.2. Electro-Optical System Configuration	232
9.3. Electronic Subsystem Configuration	233
9.4. Calculations and Estimations	237
9.5. Simulation Results	241
9.6. Conclusions	246
References	246

Chapter 10

Development and Performance Analysis of a New Magnetorheological	
Damper with Displacement Differential Self-Induced Capability	
10.1. Introduction	
10.2. Design Consideration and Self-Induced Performance Analysis	
10.2.1. Structure Design and Principle Description	
10.2.2. Analysis of the Self-Induced Performance	
10.3. Simulation Analysis of the Proposed MR Damper	
10.3.1. Magnetic Properties of MR Fluid and Steel Used in the Proposed MR Damper	257
10.3.2. Static Magnetic Field Simulations	
10.3.3. Simulation of Harmonic Magnetic Field	
10.4. Static Experimental Analysis of Self-Induced Performance	
10.5. Dynamic Experimental Analysis of Self-Induced Performance	
10.5.1. Test Rig of Dynamic Self-Induced Performance	272
10.5.2. Self-Induced Performance under Different Direct Current Inputs	274
10.5.3. Self-Induced Performance under Different Damper Displacements	275
10.5.4. Analysis of Dynamic Damping Performances	
10.6. Conclusion	
Acknowledgements	
References	

Measurements of Vacuum in Microsystems	
11.1. Vacuum MEMS	
11.2. Vacuum Nanoelectronics Devices	
11.3. A New Concept of a Miniature High Vacuum Instrument	
11.4. MEMS Vacuum Pumps	
1	

11.5. MEMS Vacuum Sensors	
11.5.1. Membrane Vacuum Sensors	
11.5.2. Thermal-Conductive Vacuum Sensors	
11.5.3. Resonant Vacuum Sensors	
11.5.4. Ionization Vacuum Sensors	
11.6. New MEMS Ionization Vacuum Sensor	
11.6.1. Technology and Working Principle	
11.6.2. Low Vacuum Measurements	
11.6.3. Medium and High Vacuum Measurements	
11.6.3.1. Calibration of the Sensor	
11.6.3.2. Vacuum Sensor Properties with Different Dosed Gases	
11.6.3.3. Measurements of Vacuum Sealed Device	
11.7. Conclusions	304
Acknowledgements	304
References	

Gaussian Function Generator for a Perceptron ANN with FGMOS	
Transistors in an Integrated Circuit	
12.1. Introduction	
12.2. Development	
12.2.1. USB 6009 Data Acquisition Device by NI	
12.3. Tests Performed to the FGMOS Transistors of the Prototype	314
12.3.1. Charge Inside Floating Gate	
12.3.2. Final Tests	
12.4. Layout	320
12.5. Conclusions	321
Acknowledgements	322
References	322

Chapter 13 High-Resolution

F	
High-Resolution Thermal Imaging Based on the Fluorescence	e
of Erbium/Ytterbium Co-Doped Ceramic	
13.1. Introduction	
13.2. Materials and Methods	
13.2.1. The Fluorescent Material	
13.2.2. Confocal Fluorescence Microscopy System	
13.2.3. Experimental Procedure	
13.2.4. Experimental Procedure	
13.3. Results and Discussion	
13.4. Conclusions	
Acknowledgements	
References	

Stopping of Transport Vehicles Using Electromagnetic Weapons	
14.1. Introduction	339
14.1.1. Direct Energy Weapons	
14.2. Electromagnetic Systems for Stopping Vehicles	
14.2.1. HPEMcarStop	
14.2.2. HPEMcheckPoint	
14.2.3. RF System Safe Stop	

14.2.4. HPEMS	343
14.2.5. EMWS Engine Stopper	344
14.2.6. Multi – Frequency Vehicle Stopper	345
14.2.7. SAVELEC	345
14.2.8. Electrical Vehicle Stopper	346
14.3. Electromagnetic Compatibility of Automotive Technology	348
14.3.1. Legislative Requirements	348
14.3.2. Regulation No. 10 of the Economic Commission for Europe of the United Nations	349
14.3.2.1. Electromagnetic Immunity	350
14.3.3. Technical Standards for Electromagnetic Compatibility of Vehicles	351
14.3.4. Technical Specifications of Vehicle Manufacturers	353
14.4. Conclusions	353
Acknowledgements	355
References	355

A Multifunctional Tri-Colour Light Emitting Diode Based Spectrometric	
Detector for Virtual Instruments	
15.1. Introduction	
15.2. Detector Design	
15.3. Virtual Instruments	
15.3.1. A Flow-Analysis VI	
15.3.2. A Microtitrator VI	
15.3.3. Execution of the Microtitrator VI	
15.4. Spectrometric Characteristics of the Detector for Discrete and Flow-Based	
Analytical Methods	
15.5. Multifunctional Performance	
15.5.1. A Spectrometric Microtitrator	
15.5.2. A Microdiffusion Based Spectrometric Reactor for Volatile Species	
15.5.3. A Spectrometric Detector with an Ascending Glass-Coil Cell for Flow	
or Sequential Injection Analysis	
15.6. Conclusions	
Acknowledgements	
References.	

GPS-Enabled Hybrid Sensor Network System for Emergency Monitoring	
of Environmental Radiation	
16.1. Introduction	
16.2. Related Works	
16.2.1. Environmental Radiation Monitoring System	
16.2.2. Environmental Radiation Emergency Monitoring	
16.3. Wireless Nuclear Radiation Detection Node Design	
16.4. Methods	
16.4.1. Interactive Protocol Design	
16.4.2. ZigBee Networking Scheme	
16.4.3. Working Mode	
16.4.4. Emergency Monitoring	
16.4.5. System Control Software Design	
16.5. System Implementation	
16.6. Conclusions	
Acknowledgements	
References	

Power Control-Based Routing in Wireless Sensor Networks: An Overview	407
17.1. Introduction	407
17.1.1. An Overview of Wireless Sensor Networks	407
17.1.2. The Architecture of Wireless Sensor Networks	408
17.1.3. Design Challenges of Wireless Sensor Networks	409
17.1.4. Applications of Wireless Sensor Networks	410
17.2. Introduction of Routing Protocols in Wireless Sensor Networks	411
17.2.1. Some Terms Related to Routing Evaluation	411
17.2.2. Traffic Patterns in Wireless Sensor Networks	412
17.2.3. Classification of Routing Protocols in Wireless Sensor Networks	412
17.2.4. Challenges of Routing Design in Wireless Sensor Networks	414
17.3. Introduction of Power Control-Based Routing in Wireless Sensor Networks	415
17.3.1. Overview of Power Control in Wireless Sensor Networks	415
17.3.2. Representative Power Control-Based Routing Protocols in Wireless Sensor Networks	416
17.3.2.1. ASTRL	416
17.3.2.2. UMM	417
17.3.2.3. ODTS	418
17.3.2.4. MMBEC	419
17.3.2.5. RTHS	421
17.3.2.6. ETP	422
17.3.2.7. ETP/DTP	423
17.3.2.8. RORRT	424
17.3.3. Comparison of Power Control-Based Routing Protocols in Wireless Sensor Networks	426
17.4. Future Directions	427
Acknowledgements	428
References	428

Chapter 18

Study of the FGM Application Peculiarities on Mobile Carriers	431
18.1. Introduction	431
18.2. Reduction of the Moving Magnetometer Axes Direction to the Reference	
Magnetometer Axes	432
18.3. Flux-Gate Magnetometer Design for Mobile Carrier	437
18.4. Drone-Mounted FGM Flight Experiment	438
18.4.1. LEMI-026 Magnetometer Dynamic Parameters Analysis in Flight	438
18.4.2. Example of Localization of a Small Ferromagnetic Anomaly	446
18.5. Evaluation of the Possibility of Obtaining Data about the Anomalous Magnetic	
Field Components Using an Inclinometer	447
18.6. Conclusion	449
References	450

Review of Environmental Detection Based on Microwave Technologies	
of Resonators, Transmission Lines, Radiometers and Radars Sensors	451
19.1. Introduction	451
19.2. Classification of Each Type of Microwave Sensor and Operating Principle	452
19.2.1. Transmission Sensors	
19.2.1.1. Description	452
19.2.1.2. Operating Principle	452
19.2.1.3. Environmental Sensing Application	453
19.2.2. Resonator Sensors	
19.2.2.1. Description	454

19.2.2.2. Operating Principle	455
19.2.2.3. Environmental Sensing Application	
19.2.3. Radiometer Sensors	
19.2.3.1. Description	
19.2.3.2. Operating Principle	
19.2.3.3. Environmental Sensing Application	459
19.2.4. Radar Sensors	
19.2.4.1. Description	
19.2.4.2. Operating Principle	
19.2.4.3. Environmental Sensing Application	
19.3. Future Directions and Challenges	
19.4. Conclusion	
References	

Developments in Compact HF-Radar Ocean Wave Measurement	469
20.1. Introduction	469
20.2. Radar Spectral Theory	471
20.2.1. Narrow-Beam Radar Cross Section	472
20.2.2. Broad-Beam Radar Cross Spectra	473
20.2.3. The Effects of Varying Ocean Surface Currents	473
20.3. Using Measured Antenna Patterns in Wave Extraction	474
20.4. Interpretation of the Radar Doppler Spectrum Using the Pierson/Moskowitz	
Ocean Wave Model	
20.4.1. Definition of the Ocean Wave Spectral Model	476
20.4.2. Steps in the Analysis Procedure	476
20.5. Results	477
20.5.1. Bodega Marine Lab., California	477
20.5.2. New Jersey, USA	477
20.5.2.1. Effects of Wind Turning Offshore	480
20.5.2.2. Wave-height and Wind-Direction Observations that Reflect the Passage	
of a Front	481
20.5.2.3. Examples of Measured Wave Results	482
20.6. Interpretation of the Radar Doppler Spectrum Using a Bimodal Ocean Wave Moa	lel.486
20.7. Conclusion	491
Acknowledgments	492
References.	492
Appendix	493

Physical Deterministic Sea Surface Temperature Retrieval Suite for Satellite	
Infrared Measurement	497
21.1. Introduction	497
21.2. Physical Deterministic Retrieval Method	
21.2.1. Least Squares (LS) Method	500
21.2.2. Modified Total Least Squares (MTLS)	501
21.2.3. Truncated Total Least Squares (TTLS)	505
21.3. Data and Methods	506
21.4. Channels Selection Using EXF	508
21.5. Sensitivity of MTLS and TTLS	511
21.6. Cloud Detection for IR SST	512
21.7. Limitations of Operational Cloud Algorithm	514
21.8. Cloud and Error Mask (CEM) Algorithm	515

21.9. Validation	20 23 26 26 27
21.10. Time Series Analysis	23 26 26 27
21.11. Conclusions	26 26 27
Acknowledgments	26 27 51
References 52 Chapter 22 Pasture Monitoring Using SAP Satellite Image with COSMO SkyMed	27 31
Chapter 22 Pastura Monitoring Using SAP Satellite Image with COSMO SkyMed	31
Posture Monitoring Using SAD Satellite Image with COSMO SkyMod	31 37
I asture monitoring Using SAK Satenite image with COSMO-Skywieu,	81 37
ENVISAT ASAR and ALOS PALSAR in Otway, Victoria, Australia53	31
22.1. Introduction	11
22.1.1. Study Site and Data	33
22.1.2. SAR Image Pre-Processing to Get Backscattering Coefficient (dB)	34
22.1.3. Calculation of NDVI, NDWI	34
22.1.4. Soil Moisture Index (M.I) Estimated from Climate Data	35
22.1.5. Classification of Study Area Using Decision Tree Method	35
22.1.6. Statistical Analysis	36
22.2. Results	36
22.2.1. Classification	36
22.2.2. COSMO-SkyMed Results	36
22.2.3. ENVISAT ASAR Results	41
22.2.3.1. Temporal Analysis of ENVISAT ASAR HH Backscattering Coefficient	
against MODIS NDVI, NDWI and Soil Moisture Index (M.I)	41
22.2.3.2. Spatial Analysis of ENVISAT ASAR HH dB against Landsat 5 TM NDVI	
and NDWI	14
22.2.4 ALOS PALSAR Results	45
22.2.4.1. Temporal Analysis of ALOS PALSAR HH dB against MODIS NDVI, NDWI,	45
and Soil Moisture index (M.I)	ŧΟ
22.2.4.2. Spatial Analysis of ALOS PALSAK HH dB against Landsat 5 TM NDVI	10
and NDW1	+0 47
22.3. Discussions	ł/
22.4. Conclusions	49 70
Kejerences	<i>)</i> ()
Index	53

Contributors

Andres Alonso-Martirena Qualitas Remos, Toronga, 31, Bajo 28043, Madrid, Spain, E-mail: andres.alonso-martirena@qualitasremos.com

David J. Apigo Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA

Donald Barrick Codar Ocean Sensors, 1914 Plymouth St., Mountain View, CA 94043, USA, E- mail: Don@codar.com

Philip Bartholomew Department of Material Science and Engineering, New Jersey Institute of Technology, Newark, NJ, USA

A. P. Bolshakov Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin, P.R. China;

A. M. Prokhorov General Physics Institute, RAS, Vavilova 38 Str., 119991, Moscow, Russia

Wei Cai Beihang University, Beijing, China

Ki H. Chon University of Connecticut, Storrs, CT, USA

G. Conte University Roma Tre and INFN, Via Vasca Navale 84, 00148, Rome, Italy

Maeve Daugharty Codar Ocean Sensors, 1914 Plymouth St., Mountain View, CA 94043, USA, E- mail: Maeve@codar.com

Dominic Deslandes École de technologie supérieure (ETS), Montréal (QC), Canada

Jaden Dicopoulos Center for Ocean Observing Leadership, Rutgers University, New Jersey, USA, E-mail: jad438@scarletmail.rutgers.edu

Fei Ding School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China; School of Information Science and Engineering, Southeast University, Nanjing 210096, China, E-mail: dingfei@njupt.edu.cn

Ruqi Ding Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China

Frédéric Domingue Université du Québec à Trois-Rivières (UQTR), Trois-Rivières (QC), Canada

M. Fátima Domingues Instituto de Telecomunicações & I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

Fedir Dudkin Lviv Centre of Institute for Space Research, Lviv, Ukraine

Oswin Ehrmann Department Leader WLSI, Fraunhofer IZM, Berlin, Germany

Reginald C. Farrow Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA

Maria Fernandes Qualitas Remos, Toronga, 31, Bajo 28043, Madrid, Spain, E-mail: maria.fernandes@qualitasremos.com

Marta S. Ferreira Department of Physics & I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

John Florian Navy Experimental Diving Unit, Panama City, Florida, USA

Fuyu Gao Beihang University, Beijing, China

Linlin Ge School of Civil and Environmental Engineering, The University of New South Wales, Sydney, Australia

Iztok Golobič University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

José Luis González Vidal UAEH, Institute of Basic Sciences and Engineering, Pachuca, Hidalgo, Mexico

Anna Górecka-Drzazga Wroclaw University of Science and Technology, Faculty of Microsystem Electronics and Photonics, 11/17 Janiszewskiego Str., 50-372 Wroclaw, Poland

Nataša Gros University of Ljubljana, Faculty of Chemistry and Chemical Technology Večna pot 113, SI-1000 Ljubljana, Slovenia, E-mail: natasa.gros@fkkt.uni-lj.si

Tomasz Grzebyk Wroclaw University of Science and Technology, Faculty of Microsystem Electronics and Photonics, 11/17 Janiszewskiego Str., 50-372 Wroclaw, Poland

Guoliang Hu Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China, E-mail: glhu@ecjtu.edu.cn

Alokik Kanwal Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA

Issam Kerroum Institut de Microéléctronique, Électromagnétisme et Photonique -Laboratoire d'Hyperfréquences et de Caractérisation (IMEP-LAHC), Université Grenoble-Alpes, Grenoble, France

Stephan Koch Helmholtz Institute Ulm (HIU) Electrochemistry I, Helmholtzstraße 11, 89081 Ulm, Germany Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karsruhe, Germany

Prabhat K. Koner CICS/Earth System Science Interdisciplinary Center, University of Maryland, 5825 University Research Ct., College Park, MD 20740, USA, E-mail: pkoner@umd.edu, Phone: +1 301 405 6568

Valery Korepanov Lviv Centre of Institute for Space Research, Lviv, Ukraine

Klaus-Dieter Lang University of Technologies Berlin and Fraunhofer IZM, Berlin, Germany

Jianqing Li School of instrument science and engineering, Southeast University, Nanjing 210096, China

Lam Ghai Lim Universiti Teknologi PETRONAS, Malaysia

Belinda Lipa Codar Ocean Sensors, 1914 Plymouth St., Mountain View, CA 94043, USA

Fengshuo Liu Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China

Xuxun Liu College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

Piotr Mackowiak Department WLSI, Fraunhofer IZM, Berlin, Germany

Michel Mortier University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Micael Nascimento Department of Physics & I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

Majid Ndoye Université du Québec à Trois-Rivières (UQTR), Trois-Rivières (QC), Canada

Ha-Duong Ngo University of Applied Sciences and Fraunhofer IZM, Microsensors, Berlin, Germany

Yeonsik Noh University of Connecticut, Storrs, CT, USA

Susana Novais Department of Physics & I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

P. Oliva University Niccolò Cusano, Via don Carlo Gnocchi 3, 00166, Rome, Italy; University Roma Tre and INFN, Via Vasca Navale 84, 00148, Rome, Italy

Stefano Passerini Helmholtz Institute Ulm (HIU) Electrochemistry I, Helmholtzstraße 11, 89081 Ulm, Germany Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021 Karsruhe, Germany

Ramón José Pérez Menéndez UNED-Spain, Rua Cantigas e Frores, 31, 27002, Lugo, Spain, E-mail: ramonjose.perez@lugo.uned.es, Tel: +34 982 280 202

João L. Pinto Department of Physics & I3N, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal

Hugo F Posada-Quintero University of Connecticut, Storrs, CT, USA

V. G. Ralchenko Harbin Institute of Technology, 92 Xidazhi Str., 150001 Harbin, P.R. China;

A. M. Prokhorov General Physics Institute, RAS, Vavilova 38 Str., 119991, Moscow, Russia

Natasa Reljin University of Connecticut, Storrs, CT, USA

Bersain Reyes Universidad Autónoma de San Luis Potosí, San Luis Potosí, México

Mario Alfredo Reyes-Barranca CINVESTAV-IPN, Electrical Engineering Dept., Mexico City, Mexico

Hugh Roarty Center for Ocean Observing Leadership, Rutgers University, New Jersey, USA, E-mail: hroarty@marine.rutgers.edu

Yi Ru Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China

Tom Russell Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA

S. Salvatori University Niccolò Cusano, Via don Carlo Gnocchi 3, 00166, Rome, Italy

Ivan Sedmak University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Suresh C. Sharma Department of Physics, University of Texas at Arlington, Arlington, Texas 76016, USA, Email: sharma@uta.edu, Phone (817) 272-2470

Aiguo Song School of instrument science and engineering, Southeast University, Nanjing 210096, China

Guangming Song School of instrument science and engineering, Southeast University, Nanjing 210096, China

Ningfang Song Beihang University, Beijing, China

Janez Štrancar University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Tong Boon Tang Universiti Teknologi PETRONAS, Malaysia

Gordon A. Thomas Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA

Iztok Urbančič University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia

Jan Valouch Faculty of Applied Informatics, Tomas Bata University in Zlin, Czech Republic

Edgar Norman Vázquez-Acosta CINVESTAV-IPN, Electrical Engineering Dept., Mexico City, Mexico

Xiaoyang Wang Beihang University, Beijing, China

Xin Wang FluroSat Pty Ltd., Eveleigh, Australia; The University of New South Wales (UNSW), Sydney, Australia

Chad Whelan Codar Ocean Sensors, 1914 Plymouth St., Mountain View, CA 94043, USA, E-mail: Chad@codar.com

Xiaobin Xu Beihang University, Beijing, China

Gang Yang Jiangsu Laboratory of Advanced Functional Material, Changshu Institute of Technology, Changshu 215500, China

Dengyin Zhang School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Zhihao Zhang Beihang University, Beijing, China

Wei Zhou Key Laboratory of Conveyance and Equipment, Ministry of Education, East China Jiaotong University, Nanchang 330013, Jiangxi, China

Preface

It is my great pleasure to present the fifth volume from our popular Book Series '*Advances in Sensors: Reviews*' started by the IFSA Publishing in 2012. Similar to the Vol.4, the Vol. 5 of this Book Series is also published as an Open Access Book in order to significantly increase the reach and impact of this volume, which also published in two formats: electronic (pdf) with full-color illustrations and print (paperback).

According to Allied Market Research (AMR), the global market of sensors and transducers is poised to grow with a compound annual growth rate (CAGR) of 11.3 % until 2022 when the market would reach US \$241 billion. In the forecasted period, nanoelectromechanical systems (NEMS) are expected to be the fastest growers. It is expected also the main drivers to the overall sensor market will be IoT (smart homes, smart cities and intelligent vehicles), smartphones, automation (Industry 4.0), automotive and wearable. All these stimulate sensor research and development for appropriate vertical industries and applications. The publication of two volumes 5 and 6 of Book Series '*Advances in Sensors: Reviews*' in 2018 was an answer from the global sensor community to these challenges.

The Vol. 5 of this Book Series contains 22 chapters written by 79 contributors-experts from universities, research centres and industry from 15 countries: Australia, Canada, China, France, Germany, Italy, Malaysia, Mexico, Poland, Portugal, Russia, Slovenia, Spain, Ukraine and USA, who did also publish their research results in sensors related, established journals including 'Sensors & Transducers' journal published by IFSA. This volume contains information at the cutting edge of sensor research and related topics from the following three areas: Physical Sensors, Sensor Networks and Remote Sensing. Coverage includes current developments in various sensors, sensor instrumentation and applications.

In order to offer a fast and easy reading of each topic, every chapter in this volume is independent and self-contained. All chapters have the same structure: first, an introduction to specific topic under study; second, particular field description including sensing or/and measuring applications. Each of chapter is ending by well selected list of references with books, journals, conference proceedings and web sites.

With the unique combination of information in this volume, the 'Advances in Sensors: Reviews' Book Series will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and end users.

I hope that readers enjoy this new book volume and that can be a valuable tool for those who involved in research and development of various sensors and its applications.

I shall gratefully receive any advices, comments, suggestions and notes from readers to make the next volumes of '*Advances in Sensors: Reviews*' Book Series very interesting and useful.

Dr. Sergey Y. Yurish

Editor IFSA Publishing

Barcelona, Spain

Chapter 12 Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

José Luis González Vidal, Mario Alfredo Reyes-Barranca and Edgar Norman Vázquez-Acosta

12.1. Introduction

Floating gate transistors are a variant of conventional CMOS technology transistors (NMOS and PMOS), but FGMOS transistors have a polysilicon plate (isolated by layers of silicon oxide) between the channel area and the typical control gate (Fig. 12.1). Because the floating gate contains a charge, it influences the threshold voltage of the device. The relation between the threshold voltage and the floating gate parameters is explained in Eq. (12.1). Floating gate voltage V_{fg} can be found by superposition, considering each of the voltages (V_{cg} and V_i) applied to the structure, which is denoted in Eq. (12.1).

$$V_{fg} = \sum_{i} K_i V_i + K_{cgi} V_{cgi}, \qquad (12.1)$$

$$K_i = \frac{C_i}{C_{tot}},$$
(12.2)

$$K_{cg} = \frac{C_{pp}}{C_{tot}},$$
(12.3)

where C_{CGi} is the capacitance due to each of the *i* control gates, V_{cgi} is the voltage applied to each control gate, C_{tot} is the total equivalent capacitance, V_D is the drain voltage, V_S is the source voltage, V_B is the bulk voltage, C_{GD} is the parasitic capacitance between the drain and the floating gate, C_{GS} is the parasitic capacitance between the source and the floating gate, Q_{FG} is any residual charge that may be present on the floating gate, and K_{cg} is defined as the coupling coefficient for each control gate. Therefore, it is clear that the

José Luis González Vidal

UAEH, Institute of Basic Sciences and Engineering, Pachuca, Hidalgo, Mexico

drain current, I_{ds} , of the FGMOS will be a function of the floating gate voltage, which in turn, is a function of the injected charge present at the floating gate [1-4].

Fig. 12.1. FGMOS n-type.

This adaptability can be translated to electronic circuits and many algorithms were successfully implemented within electronic integrated circuits (IC) that attempt to emulate the neural biology behavior, based on assumptions derived from previous input values or new input values for training purposes of the ANN. Here, the element that can provide for the adaptability is the FGMOS, since it can deliver a variable resistance that can be adapted as is usual for typical weights used in several ANNs architectures.

As is well known, information processing occurs in neurons; each neuron is a small single processor whose response is non-linear. Individual neurons are able to perform very simple tasks which are further transferred to other neurons by connection links. These connection links have an associated weight and this weight multiplies as the signal is transmitted between different neurons [1, 5, 6].

Besides, the architecture of an ANN is a pattern of connections between the neurons; training or learning methods determine the connections' weights, and their activation function, which is a function of the input values it has received. Usually, a neuron sends an activation function as a signal to many other neurons. Although it can send only one signal at a time, that signal is broadcasted to several neurons. Some of the activation functions of ANNs are: identity, binary or unit step, piecewise linear, sigmoid, Gaussian and sinusoidal, among others. One, two, or more layers can constitute an ANN. Also, it has input (Xi) and output connections (Y). Inputs can be analog or digital signals. Synaptic weights (Wj) (also called gain or strength) are values associated with a connection path between two processing elements in an ANN and activation function f(x) is a function (mathematical equation) that transforms the net input neuron into its activation (Fig. 12.2), also known as a transfer function or output.

Output propagations can be backward or forward [7-13].

Inverters, designed and interconnected in the proposed circuit, generate at its output a Gaussian-type wave form. To improve the function, an alternative circuit was proposed with an inverter and an operational amplifier, which improves its Gaussian-type output

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

function. With the purpose to verify the correct operation of n-type and p-type FGMOS transistors, it is important to first make measurements, so current-voltage characteristics (I-V), and transconductance behaviors of real FGMOS transistors were performed and compared to previous simulation made with OrCAD. At the end, inverter measurements indicated there was an appropriate operation.

Fig. 12.2. ANN diagram.

12.2. Development

12.2.1. USB 6009 Data Acquisition Device by NI

An electronic circuit using op-amps was designed for signal conditioning; a non-inverting voltage follower op-amp was used, because it has high input impedance and supplies adequate current values to a data acquisition system. Also an electronic system was developed for data acquisition. This system used a USB 6009 data acquisition device by NI. This data acquisition device can read output voltage of the prototype without producing electrical interference in the prototype performance, thus a huge electrical charge can avoid tiny dimensions' inverters.

The first measurements had problems because of inherent electronic noise in the board. Fig. 12.3 shows a plot of the noise delivered by the electronic board; a filter was implemented to reduce this noise, and the signal after filtering is shown in Fig. 12.4 [14, 15].

A Gaussian function was desired for a perceptron ANN architecture, therefore, a circuit was designed by using both n-type and p-type FGMOS transistors. The designed electronic schematic circuit is shown in Fig. 12.5.

As it can be seen here, each transistor has its own floating gate, so adjustment of charge is made separately for each transistor. This gives the opportunity to reliably achieve the target function. The designed coupling coefficient value for either the n-type or the p-type FGMOS transistors was $K_{cg} = 0.28$. An equivalent circuit has tree inverters INV1, INV2 and INV3, an input signal VG1 and an output signal VOUT. VG1 is joined to both INV1 and INV2 inputs; INV1 and INV3 are joined in cascade, and INV3 output is joined to P4 gate; INV2 output is joined to N4 gate (Fig. 12.6) [7, 9, 13].

Fig. 12.3. Reading noise.

Fig. 12.4. Reduced noise measurement.

Fig. 12.5. An electronic schematic circuit for a Gaussian function (ANN).

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

Fig. 12.6. An equivalent electronic circuit for a Gaussian function (ANN).

After several simulations made regarding the mentioned inverters, the capacitance that can best fit with the trade-off purposes of inverter's performance and design area was 0.1 pF. FGMOS transistors were designed by using 0.5 AMIS technology. Hence, the defined dimensions for the capacitance control gate that resulted from simulations and design rules for this technology were $37\lambda \times 37\lambda$, where $\lambda = 0.3 \mu m$. Starting from the technological data, a 103 fF capacitance was obtained, while the transistors dimensions were as follows: Wn = Wp = 6λ , Ln = 4λ , Lp = 2λ .

The circuit shown in Fig. 12.6 has some voltage variations due to a double inverting effect. So, alternatively, another circuit was proposed that has better performance characteristics. Furthermore, this alternative circuit eliminates undesired issues that are present in the former circuit, at the expense of introducing an operational amplifier and its corresponding external resistances. The proposed alternative circuit is shown in Fig. 12.7 and the Equivalent alternative circuit in Fig. 12.8 (op-amp).

Fig. 12.7. Alternative circuit (op-amp).

In order to verify the correct operation of all modules and circuits, this ASIC circuit was tested through the data acquisition board mentioned above, with which it is possible to computationally interact with the circuit, giving the possibility to know the behavior of the proposed model and validate it. The test consists in applying an input ramp voltage to the gate of a FGMOS transistor. A series resistor is used to limit the current flowing through the transistor, and also to determine the current that flows through the transistor, making possible to obtain transconductance curves that define the transistors.

Fig. 12.8. Equivalent alternative circuit (op-amp).

Figs. 12.9 and 12.10 show plots of both, the input voltage and the output voltage as a function of time, with different magnitudes of charge present over the floating gate of the FGMOS, with $V_{DD} = 5$ V. In Fig. 12.9 It should be noted that the circuit output plot is similar to a narrow Gaussian shaped function. The output function can be expanded or inverted as desired thanks to the FGMOS. Moreover, a negative function can be generated also as is shown in Fig. 12.10. This may be useful if one remembers that neurons can be excited with positive or negative inputs.

Fig. 12.9. Narrow pseudo Gaussian function of the circuit shown in Fig. 12.8, with an input ramp voltage.

Fig. 12.10. Inverted output due to the modification of voltage values that represent the charge of FGMOS transistors.

12.3. Tests Performed to the FGMOS Transistors of the Prototype

The tests performed to the FGMOS transistors allow knowing whether there is a charge in the floating gate or not, making possible to set the transistor to a neutral or any defined charge in order to characterize its operation.

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

This is very useful since it allows to establish the programming procedure, for injection of charge into the floating gate of the FGMOS transistors, which leads to the consecution of the pseudo Gaussian function. Fig. 12.11 shows the output I-V curve of an n-type FGMOS presenting a charge in the floating gate which goes against the transistor's polarization. That is noticeable because I_{ds} is near 0 A when $V_{gs} < 1.5$ V. Therefore, the voltage V_{gs} must be higher than 1.5 V to form the transistor's channel. It is worth noting that the threshold voltage for these transistors and for this technology is $V_{th} = 0.67$ V.

Fig. 12.11. N-type FGMOS characteristic plot (AMIS 0.5 technology).

It is commonly known that transconductance is a figure of merit for every MOSFET. In this case, an n-type FGMOS transconductance plot is shown in Fig. 12.12. Besides, for the designed coupling coefficient, the apparent threshold voltage, V_{th}^* , must be approximately 2.45 V when there is not residual charge over the floating gate. V_{th}^* is the threshold voltage of a FGMOS when I_{ds} is plotted as a function of the control gate, V_{gs} , not the floating gate, V_{fg} (V_{th} (N-MOS) = 0.82 V). Hence, any deviation from this value is indication of the presence of charge upon the floating gate. If the transconductance plot is shifted to the right, there is extra negative charge on the floating gate and when shifted to the left, positive charge is present. Regarding Fig. 12.12, it can be seen that there is no charge present on the floating gate since the apparent threshold voltage for this FGMOS is approximately 2.45 V.

On the other hand, Fig. 12.13 shows the output curve of a p-type FGMOS. In this case it can be seen that even when $V_{gs} = 0$ V, a current already flows across the FGMOS due to the presence of a negative charge; the typical threshold voltage for FGMOS is $V_{th} = -0.86$ V and the apparent threshold voltage, for this p-type FGMOS should be approximately Vth* = -2.4 V (Vth(P-MOS) = -0.92 V).

Next, Fig. 12.14 shows a p-type FGMOS transconductance curve, so it can be appreciated that a current is already present even for positive voltages, which means that the floating gate has a charge that promotes by itself the channel formation of the p-type FGMOS transistor even with when $V_{gs} = +0.5$ V.

Fig. 12.12. N-type FGMOS transconductance plot.

Fig. 12.13. P-type FGMOS characteristic plot (AMIS 0.5 technology).

Fig. 12.14. P-type FGMOS transconductance plot.

Besides, the validation of the FGMOS transistor model is necessary in order to determine whether simulations fit closely to experimental data. For this reason, a comparison was made between the plots relating the experimental results of the prototype transistors and the simulations carried out using OrCAD® simulation software. Every simulation was carried out under the same polarization characteristics, this is, same voltage and same probe inputs. In the case of the n-type FGMOS transistor, it should be mentioned that a negative charge polarity inhibits the inversion channel to be present at control gate voltage values above the typical threshold voltage. The same will occur when positive charge is present on the floating gate of p-type FGMOS transistors.

Other comparisons between developed models used in a simulation program and the experimental measurements of the prototype transistors were made. In most cases, behaviors have very similar performances. This can be seen in Figs. 12.15 and 12.16 for the output and transconductance I-V characteristics, respectively of a n-type FGMOS. Also this comparison is made in Figs. 12.17 and 12.18 for the output and transconductance I-V characteristic, respectively of a p-type FGMOS. It can be seen that in all cases there is a good approximation between simulated curves compared with experimental data.

Fig. 12.15. Characteristic plot of both simulation and prototype n-type FGMOS transistors, for $V_{gs} = 3 V$.

Fig. 12.16. Transconductance plots of both simulation and prototype of n-type FGMOS transistors, for $V_{gs} = 3 V$.

12.3.1. Charge Inside Floating Gate

It should be mentioned that depending the magnitude or the polarity, the charge can promote or inhibit the formation of the channel in the transistor, even for positive or negative voltages applied to the control gate. For instance, Fig. 12.18 shows the transconductance characteristic curve of a p-type FGMOS transistor with voltage Vds = -1 V.

Fig. 12.17. Characteristic plot of both simulation and prototype n-type FGMOS transistors, for $V_{gs} = 3$ V.

Fig. 12.18. Simulation and prototype transconductance plots of a p-type FGMOS transistor, Vds = -1 V applied.

Furthermore, it shows that the results of the simulated model and the experimental measurement are very approximate. The apparent measured threshold voltage for this p-type FGMOS is approximately $V_{th}^* = -0.3$ V. Since the expected apparent threshold voltage in a neutral FGMOS is $V_{th}^* = -2.4$ V, this right-shifted curve indicates the presence of negative charge that enhances the presence of a conductive channel between drain and source, even with negative voltages lower than this last voltage, applied to the control gate. Then, this is a demonstration that if charge can be injected or extracted to or from the floating gate, this can be used to modulate the electrical performance of the FGMOS, such that it can be used as a variable input weight within a learning algorithm in a supervised ANN. Injection/extraction of charge can be made by means of Fowler-Nordheim tunneling, and this is the method used in this work to program off-line both types of FGMOS transistors, in order to achieve the desired pseudo-Gaussian function to accomplish the correlation of gas species with a readable electric signal, as is proposed in this work.

Some experiments on this issue were tried and the results are shown next.

12.3.2. Final Tests

Several tests were carried out to transistors that are part of the ASIC prototype. Tests have demonstrated the possible modification of the behavior of an inverter formed by floating gate transistors. The results are shown in Figs. 12.19 to 12.22. The initial test of the inverter is shown in Fig. 12.19, where the output of the ANN shown in Fig. 12.8 was measured when a signal was applied to the input of the ANN, with these characteristics: first, a growing ramp with a slew rate of 3 V/1.33 s, next, a fixed value of 3 V during 0.66 s, and finally, a decreasing ramp with a negative slew rate of 3 V/1.33 s. Here it can be seen that the expected inversion is present but does the normal rail to rail output voltage (0 to 5 V) is not obtained; after that, a pulse of 15 V was applied at 1 ms.

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

Fig. 12.19. Initial test of an inverter.

Fig. 12.21. Inverter response for three 1 ms pulses of 15 V applied to n-type FGMOS transistor.

Fig. 12.20. Inverter response for 1 ms pulse of 15 V applied to n-type FGMOS transistor.

Fig. 12.22. Inverter's behavior after applying a pulse of 1 ms and -14 V applied to the floating gate of the p-type FGMOS transistor.

Fig. 12.20 shows the behavior of the inverter after programming the floating gate of ntype transistor. It is observed that the inversion is now more limited in terms of voltage values; because of this unwanted result, such charge in the n-type transistor gets deprogrammed.

The results of applying the test input after a series of pulses of -15 V for 1 ms are shown in Fig. 12.21. In this case, behavior variations are not appreciated. It is presumed that bigger voltages are required when it is wanted to decrease the charge in the floating gate. It is assumed that this behavior is due to charge extraction process that is carried out in the bottom side of the silicon oxide layer between polysilicon 1 and polysilicon 2, while charge injection process is carried out in the top layer of the oxide. It can be presumed that the surface is different in both sides. Due to its defects, the electrons traverse the superior surface easier than the inferior surface. That results in a substantial increase of charge extraction voltage. In order not to damage the n-type transistor with voltages higher than 15 V, the process was suspended. P-type FGMOS transistor was programmed by applying -14 V for 1 ms to the floating gate. The results are shown in Fig. 12.22. Now, the inverter has a behavior similar to a voltage follower because charges were injected in n-type and p-type gates of the transistors.

Two mechanisms are normally used to inject (extract) charge to (from) the floating gate: (a) hot electron injection and (b) carrier tunneling. Both of them are based on the electric field established between proper terminals of the devices.

12.4. Layout

The layout design for the development of an integrated circuit defines the elements that are going to be part of the Application Specific Integrated Circuit (ASIC), as well as the connections between them and the different structures and techniques, that allow eliminating the external noise and also defining the connections towards the package pins. Fig. 12.23 shows the whole design of an IC for AMIS 0.5 technology.

Fig. 12.23. Layout of the integrated circuit.

The circuit proposed to generate the Gaussian function is shown in Fig. 12.24. It is formed by four inverters, which, working together, allow generating the Gaussian function by modifying the charges in the FGMOS floating gate. The alternative circuit layout and the op-amp are shown in Fig. 12.25. The design also includes guard rings that prevent and avoid noise from the environment and another undesirable effects. On the other hand, structures that prevent charges in the floating gates during fabrication their fabrication, were added.

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

Fig. 12.24. Layout of the circuit proposed to obtain the Gaussian function.

Fig. 12.25. Layout of the alternative circuit for Gaussian function (op-amp).

12.5. Conclusions

The dimensions of the lengths (L) and widths (W) of the channels are $Wn = Wp = 6\lambda$, $Ln = 4\lambda$, $Lp = 2\lambda$. The transistors' simulation was performed with Orcad®. After that, inverters for the circuit of ANN Perceptron were implemented. Several tests on current and voltage (IV) and on transconductance were carried out, which are essential to guarantee proper operation. An alternative circuit was designed with an inverter and an op-amp using n-type and p-type FGMOS transistors. Such circuit provides a Gaussian-type signal of positive and negative values. An electronic data acquisition card was developed to characterize the designed circuits, and an interface based on Simulink in

Matlab® was used to read data provided by the integrated circuit. During test procedure, different voltage levels were applied to floating gates of FGMOS transistors to verify the exchange of charges inside the gates. The transistors' gates are charged since their fabrication, therefore the threshold voltage was modified and signal's inversion was not performed. It was noticed a change in the FGMOS transistor's response when a positive voltage pulse of 15 V was applied to n-type FGMOS transistor. This means that both negative charges and the threshold voltage were increased. After that, -15 V were applied to the same floating gate of n-type FGMOS transistor. Although there was no reversion process, it is assumed that the negative voltage that is necessary to decrease the charge is higher than the applied voltage when such charge was increased. After that, -14 V were applied to the floating gate of p-type FGMOS transistor, making the circuit to behave as a follower.

At the end, an integrated circuit was designed and produced using the 0.5 μ m AMIS technology. The integrated circuit contains the proposed and alternative circuits for a perceptron ANN. This integrated circuit will serve as a basis for its future integration to a gas sensing system.

Acknowledgements

The authors want to thank to M. Sc. Luis Martín Flores Nava for his grateful support in the circuit design, simulation and characterization.

References

- [1]. M. A. Reyes-Barranca, et al., Using a floating-gate MOS transistor as a transducer in a MEMS gas sensing SMOS transistor, *Sensors*, Vol. 10, 2010, pp. 10413-10434.
- [2]. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons Inc., New Jersey, Hoboken, 2007.
- [3]. E. N. Vázquez-Acosta, et al., Performance evaluation of a temperature control stage used on a semiconductor gas sensor 3D electrothermal model through Simulink, in Technology and Engineering Applications of Simulink (S. C. Chakravarty, Ed.), *Intech*, Rijeka, 2012, pp. 167-188.
- [4]. E. N. Vázquez Acosta, et al., Simplified adjusting and simulation of a pseudo Gaussian function in voltage domain generated with FGMOS transistors on circuit simulation software exportable to a multi domain platform, in *Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE'12)*, Mexico City, 2012.
- [5]. R. Pandey, M. Gupta, FGMOS based voltage-controlled grounded resistor, *Radioengineering*, Vol. 19, 2010, pp. 455-459.
- [6]. M. Gupta, R. Srivastava, U. Singh, Low voltage floating gate MOS transistor based differential voltage squarer, *ISRN Electronics*, Vol. 2014, 2014, pp. 1-6.
- [7]. L. Fauselt, Fundamental of Neural Networks, Architectures, Algorithms and Applications, Vol. 1, *Prentice-Hall*, 1994.
- [8]. B. Martin Del Brio, A. Sanz Molina, Redes Neuronales y Sistemas Borrosos, *Alfa Omega*, Mexico, City, 2007.
- [9]. S. Haykin, Neural Networks. A Comprehensive Foundation, 2nd Ed., Prentice-Hall, 1999.

Chapter 12. Gaussian Function Generator for a Perceptron ANN with FGMOS Transistors in an Integrated Circuit

- [10]. K. Warwick, An overview of neural networks in control applications, in Neural Networks for Robotic Control (M. Zalzala, Ed.), *Prentice-Hall*, Saddle River, NJ, USA, 1995.
- [11]. P. D. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Reinhold, New York, NY, USA, 1993.
- [12]. J. C. Principe, E. Neil R., L. W. Curt, Neural and Adaptive Systems: Fundamentals Through Simulations, *Wiley*, 2000.
- [13]. H. Guan, Y. S. Tang, Accurate and efficient models for the simulation of neuron MOS integrated circuits, *International Journal of Electronics*, Vol. 87, Issue 5, 2000, pp. 557-568.
- [14]. G. Vasilescu, Electronic Noise and Interfering Signals, Principles and Applications, *Springer*, Paris, France, 2005.
- [15]. B. Guo, et al., A monolithic integrated 4×4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits, *Solid State Electronics*, Vol. 51, Issue 1, 2007, pp. 47-54.