
2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). Mexico City, Mexico. October 25-27, 2023

979-8-3503-0676-7/23/$31.00 ©2023 IEEE

Computing Pseudoinverse Matrices with Single-Layer
Neural Networks

Felipe Gómez Castañeda
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

 fgomez@cinvestav.mx

Luis Martín Flores Nava
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

lmflores@cinvestav.mx

Alvaro Anzueto Ríos
Bionic Academic, UPIITA-IPN,

Mexico City, Mexico
aanzuetor@ipn.mx

José Antonio Moreno Cadenas
Electrical Engineering

Department, CINVESTAV-IPN,
Mexico City, Mexico

jmoreno@cinvestav.mx

Abstract— This work evaluates numerical results related to
single-layer neural networks, which compute pseudoinverse
matrices. This is possible due to the gradient descendent
algorithms available in the machine learning TensorFlow
framework, which optimizes training processes. Linear algebra
principles support our formulations, which are proved at the end
of the training stage.

Keywords— Pseudoinverse, Neural Network, Machine
Learning, Adamax.

I. INTRODUCTION

Currently, machine learning systems based on neural
networks and linear algebra converge to provide efficient
solutions to diverse and complex problems in engineering,
science, and other knowledge fields.

This is the case of processing raw data as a dimensionality
reduction task, where an autoencoder neural network can be
used. Its simulation and analysis are done with TensorFlow for
efficient numerical performance. Considering this machine
learning framework i.e. using the training algorithms based on
the gradient descendent method, we propose computing the
pseudoinverse matrix of full-rank matrices as an approach
supported by a single-layer neural network (SLNN). To this end,
a linear algebra formulation follows before this computation;
namely, basic formulae relate linearly output with input matrices
in this neural technique, from which after training the
pseudoinverse matrix can be observed with acceptable
precision.

II. PSEUDOINVERSE MATRIX CONCEPT

The pseudoinverse matrix X of matrix Y, denoted as Y+, was
first stated by Moore and later it was completed by Penrose [1].
The Moore-Penrose pseudoinverse is recognized as such,
satisfying the equations below.

𝑌𝑋𝑌 = 𝑌 (1)

𝑋𝑌𝑋 = 𝑋 (2)

(𝑌𝑋)் = 𝑌𝑋 (3)

 (𝑋𝑌)் = 𝑋𝑌 (4)

The superscript T means transpose. From these 4 equations,
if only one is satisfied, then it is called the generalized inverse;
this is the case in this work. If Y is a full-rank matrix, where:
𝑌 ∈ ℝ௠௫௡ , then the Moore-Penrose pseudoinverse Y+ can be
calculated numerically using either (5) or (7) below, where ()-1
indicates inverse.

(𝑌்𝑌)ିଵ𝑌் 𝑖𝑓 𝑚 > 𝑛 (5)

𝑌ିଵ 𝑖𝑓 𝑚 = 𝑛 (6)

𝑌்(𝑌𝑌்)ିଵ 𝑖𝑓 𝑚 < 𝑛 (7)

In this work, the numerical value of the Moore-Penrose
pseudoinverse is taken as a reference for comparison with the
computed pseudoinverse matrix by SLNNs. Additionally,
because many actual cases deal with data matrices whose
dimension is m>n, we consider only this type of rectangular
matrix.

III. PROPOSED METHODOLOGY

 Neural network models were used earlier [2] as parallel
processes for computing pseudoinverse matrices, where their
timing was the main issue. At present, with both computer
technology and machine learning techniques neural models
become a means for efficiently dealing with complex data in
real-time. This fact occurs mainly because the existing training
algorithms are based on optimal gradient descent methods [3].
Observing this advantage, we benefit by applying its potential
in training single-layer neural networks to compute
pseudoinverse matrices.

 This methodology codes in Python linear neural networks in
a TensorFlow/Spyder framework and uses Adamax from the
Keras library for their training. The architecture of these
networks is shown in Figure 1, where A and B are the input and
output matrices, respectively. The weighting matrix W connects
the input and output layers and it is the object of training. The
pseudoinverse matrix X of matrix Y can be computed with

20
23

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ric

al
 E

ng
in

ee
rin

g,
 C

om
pu

tin
g

Sc
ie

nc
e

an
d

A
ut

om
at

ic
 C

on
tro

l (
C

C
E)

 |
97

9-
8-

35
03

-0
67

6-
7/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
C

E6
00

43
.2

02
3.

10
33

28
40

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:15:53 UTC from IEEE Xplore. Restrictions apply.

appropriate accuracy by proposing different formulations for
matrices A and B.
 We present two formulations in Table I that support
relevant results from other rejected initial ones. The loss
functions are evaluated as Frobenious norms. Matrices O and I
mean orthogonal and identity matrices, respectively. We
describe the origin of these formulations below based on linear
algebra principles.

W

A B

Input layer Output layer

Fig. 1. The architecture of these networks.

TABLE I. FORMULATIONS: 1 AND 2

 After training Loss function
1 A = Y B = XT,

W = X XT
L = | YT B – I |2

F

2 A = O YT Y B = O,
X = W YT

L = | O – B |2
F

 The first formulation computes the pseudoinverse X of Y via
the transpose of the output matrix. This comes from relating
A=Y and B=XT with W=XXT i.e. Y(XXT) = XT, which gets high
accuracy after training.

Using the second formulation, the pseudoinverse X is
obtained by multiplying W by the transpose of Y. In this case,
the original input and output matrices are A=OYTY and B=O.
Relating both A and B with W, it gets OYTY W = O. Working
out this equation as with the 8 equations below, the
pseudoinverse X is obtained.

𝑂𝑌்𝑌𝑊 = 𝑂 (8)

(𝑂𝑌்𝑌)ିଵ𝑂𝑌்𝑌𝑊 = (𝑂𝑌்𝑌)ିଵ𝑂 (9)

𝑊 = (𝑂𝑌்𝑌)ିଵ𝑂 (10)

𝑊 = (𝑌்𝑌)ିଵ𝑂ିଵ𝑂 (11)

𝑊 = (𝑌்𝑌)ିଵ (12)

𝑊 = 𝑌ିଵ(𝑌்)ିଵ (13)

𝑊𝑌் = 𝑌ିଵ (14)

𝑊𝑌் = 𝑋 (15)

 Notably, the loss functions in Table I are responsible for the
end values of matrices X that approach pseudoinverse matrices
with acceptable accuracy.

IV. EVALUATION OF RESULTS

 The performance of both Formulation 1 and Formulation 2
is evaluated by counting the number of digits that match
between the elements of the pseudoinverse matrix using the
numerical Moore-Penrose algorithm and the one given by the
neural network. This evaluation is presented visually as whisker
graphs. Figures 2 and 6 compare the effect of using either a
uniform or a normal distribution in the entries of the matrices
for computing their pseudoinverse, where the uniform one
presents the best performance. Figures 2-5 show the results for
the first formulation meanwhile, Figures 6-9 present results for
the second formulation.
 For original matrices Y, whose entries are in [0, 1], this
neural method does not converge. The solution is to transform
them into matrices with entries in [-1, 1]. The following
equations sequence (16-19), demonstrates the supporting
transformation which helps to find Y+. Where, Z is an auxiliary
and arbitrary matrix, whose entries are random in [-1, 1].

𝑌 = 𝑌𝑍(𝑍)ା (16)

(𝑌)ା = (𝑌𝑍(𝑍)ା)ା (17)

(𝑌)ା = ((𝑍)ା)ା(𝑌𝑍)ା (18)

𝑌ା = 𝑍(𝑌𝑍)ା (19)

 Using the new matrix YZ, whose entries are now in [-1, 1],
its pseudoinverse (YZ)+ can be computed by the neural network.
Therefore, the pseudoinverse matrix Y+ is obtained by
multiplying (YZ)+ by Z.

Fig. 2. Effect of Uniform and Normal distribution in the entries of matrices
with a 200x50 dimension. Entries are in [-1, 1].

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:15:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Effect of the number of epochs in a matrix with a 200x50 dimension.
Entries are random in [-1, 1].

Fig. 4. Effect of the matrix dimension. Entries are random in [-1, 1].

Fig. 5. Effect of the matrix dimension. Entries are random in [0, 1].

Fig. 6. Effect of Uniform and Normal distribution in the entries of matrices
with a 200x50 dimension. Entries are in [-1, 1].

Fig. 7. Effect of the number of epochs in matrix with a 200x50 dimension.
Entries are random in [-1, 1].

Fig. 8. Effect of the matrix dimension. Entries are random in [-1, 1].

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:15:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Effect of the matrix dimension. Entries are random in [0, 1].

Some extra details of the above results follow.

 Figures 2 and 6 deal with two types of distribution: random
uniform and Normal. Both generate the entries of the matrices
in [-1, 1] and, the media and the standard deviation are 0 and
0.3, respectively for the Normal case.
Figures 3 and 7 show the effect of the number of epochs for a
200x50 dimension matrix, whose entries are random and
uniform in [-1, 1].
 Figures 4 and 8 present the same number of matching digits
i.e. 15, which is obtained with 2500, 2000, 1500, and 1000
epochs for matrices whose dimension is 20x5, 50x10, 100x25,
and 200x50, respectively.
 Figures 5 and 9 were obtained with 500 epochs for matrices
whose entries are random and uniform in [0, 1].

 The graphical results in all Figures indicate that the number
of matching digits is in the range between 12 and 15, which is
equivalent to a Frobenious value lower than 1x10-30. The
obtained accuracy is acceptable for a wide set of applications,
which might include the implementation of both the training
algorithm and the neural network with FPGA technology.

V. DISCUSSION

 The objective of this work was to present a series of
numerical results from the training of single-layer linear neural
networks for approaching pseudoinverse matrices with good
accuracy relative to their numerical representation with
standard computing systems. This objective was reached due to
the training algorithms available from machine learning
frameworks. The strategy was established via linear algebra
principles that relate matrices, in this case proposing 2
formulations, which are arbitrary but certain. Moreover, to
evaluate possible trends in the final accuracy, the effect of the
following factors was considered.

1. A normal o Gaussian distribution against a uniform
distribution of the entry values of the matrices.

2. Number of training epochs.
3. Matrix dimension.
4. The combination of the above.

 And, the Figures 2-9 are a graphical presentation of these 4
points. From these Figures we can choose those ones whose #
of matching digits is large and combine them properly as a
criterion to get the best performance. This task is left open to
further research.
.

VI. CONCLUSIONS

 The authors presented an exploration of the usefulness of the
gradient descendent training method Adamax, on single-layer
neural networks for computing pseudoinverse matrices. Two
formulations were established by linear algebra principles and
proofed numerically leading to acceptable accuracies.
Moreover, the TensorFlow framework with Keras library
reduces time analysis for large dimension matrices.

REFERENCES
[1] R. Penrose, “A Generalized Inverse for Matrices”, Mathematical

Proceedings of the Cambridge Philosophical Society, pp. 406-413, 1954.

[2] M. M. Polycarpou, P.A. Ioannou, “A Neural-Type Parallel Algorithm for
Fast Matrix Inversion”, Proceedings of the Fifth International Parallel
Processing Symposium, pp. 108-113, 1991.

[3] Saad Hikmat Haji, Adnan Mohsin Abdulazeez, “Comparison of
Optimization Techniques Based on Gradient Descent Algorithm: A
Review”, PalArch's Journal of Archaeology of Egypt / Egyptology, pp.
2715-2743, 2021.

Authorized licensed use limited to: CINVESTAV. Downloaded on January 19,2024 at 21:15:53 UTC from IEEE Xplore. Restrictions apply.

