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Abstract— This work evaluates numerical results related to 
single-layer neural networks, which compute pseudoinverse 
matrices. This is possible due to the gradient descendent 
algorithms available in the machine learning TensorFlow 
framework, which optimizes training processes. Linear algebra 
principles support our formulations, which are proved at the end 
of the training stage. 

Keywords— Pseudoinverse, Neural Network, Machine 
Learning, Adamax. 

 

I. INTRODUCTION 

Currently, machine learning systems based on neural 
networks and linear algebra converge to provide efficient 
solutions to diverse and complex problems in engineering, 
science, and other knowledge fields. 

This is the case of processing raw data as a dimensionality 
reduction task, where an autoencoder neural network can be 
used. Its simulation and analysis are done with TensorFlow for 
efficient numerical performance. Considering this machine 
learning framework i.e. using the training algorithms based on 
the gradient descendent method, we propose computing the 
pseudoinverse matrix of full-rank matrices as an approach 
supported by a single-layer neural network (SLNN). To this end, 
a linear algebra formulation follows before this computation; 
namely, basic formulae relate linearly output with input matrices 
in this neural technique, from which after training the 
pseudoinverse matrix can be observed with acceptable 
precision. 

II. PSEUDOINVERSE MATRIX CONCEPT 

The pseudoinverse matrix X of matrix Y, denoted as Y+, was 
first stated by Moore and later it was completed by Penrose [1]. 
The Moore-Penrose pseudoinverse is recognized as such, 
satisfying the equations below. 

𝑌𝑋𝑌 = 𝑌                                        (1) 

𝑋𝑌𝑋 = 𝑋                                        (2) 

(𝑌𝑋)் = 𝑌𝑋                                      (3) 

  (𝑋𝑌)் = 𝑋𝑌                                      (4) 

The superscript T means transpose. From these 4 equations, 
if only one is satisfied, then it is called the generalized inverse; 
this is the case in this work. If Y is a full-rank matrix, where:     
𝑌 ∈ ℝ௠௫௡ , then the Moore-Penrose pseudoinverse Y+ can be 
calculated numerically using either (5) or (7) below, where ()-1 
indicates inverse. 

 

(𝑌்𝑌)ିଵ𝑌்       𝑖𝑓       𝑚 > 𝑛                         (5) 

𝑌ିଵ                   𝑖𝑓       𝑚 = 𝑛                         (6) 

𝑌்(𝑌𝑌்)ିଵ     𝑖𝑓        𝑚 < 𝑛                         (7)                                  

 

In this work, the numerical value of the Moore-Penrose 
pseudoinverse is taken as a reference for comparison with the 
computed pseudoinverse matrix by SLNNs. Additionally, 
because many actual cases deal with data matrices whose 
dimension is m>n, we consider only this type of rectangular 
matrix. 

 

III. PROPOSED METHODOLOGY 

     Neural network models were used earlier [2] as parallel 
processes for computing pseudoinverse matrices, where their 
timing was the main issue. At present, with both computer 
technology and machine learning techniques neural models 
become a means for efficiently dealing with complex data in 
real-time. This fact occurs mainly because the existing training 
algorithms are based on optimal gradient descent methods [3]. 
Observing this advantage, we benefit by applying its potential 
in training single-layer neural networks to compute 
pseudoinverse matrices. 
 
     This methodology codes in Python linear neural networks in 
a TensorFlow/Spyder framework and uses Adamax from the 
Keras library for their training. The architecture of these 
networks is shown in Figure 1, where A and B are the input and 
output matrices, respectively. The weighting matrix W connects 
the input and output layers and it is the object of training. The 
pseudoinverse matrix X of matrix Y can be computed with 
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appropriate accuracy by proposing different formulations for 
matrices A and B. 
      We present two formulations in Table I that support 
relevant results from other rejected initial ones. The loss 
functions are evaluated as Frobenious norms. Matrices O and I 
mean orthogonal and identity matrices, respectively. We 
describe the origin of these formulations below based on linear 
algebra principles. 
 

W

A B

Input layer Output layer  
 

Fig. 1. The architecture of these networks. 

 

TABLE I.  FORMULATIONS: 1 AND 2 

  After training Loss function 
1 A = Y B = XT, 

W = X XT 
L = | YT B – I |2

F 
 

2 A = O YT Y B = O, 
X = W YT 

L = | O – B |2
F 

 

     The first formulation computes the pseudoinverse X of Y via 
the transpose of the output matrix. This comes from relating 
A=Y and B=XT with W=XXT i.e. Y(XXT) = XT, which gets high 
accuracy after training. 

Using the second formulation, the pseudoinverse X is 
obtained by multiplying W by the transpose of Y. In this case, 
the original input and output matrices are A=OYTY and B=O. 
Relating both A and B with W, it gets OYTY W = O. Working 
out this equation as with the 8 equations below, the 
pseudoinverse X is obtained. 

 

𝑂𝑌்𝑌𝑊 = 𝑂                                                    (8) 

(𝑂𝑌்𝑌)ିଵ𝑂𝑌்𝑌𝑊 = (𝑂𝑌்𝑌)ିଵ𝑂                      (9) 

𝑊 = (𝑂𝑌்𝑌)ିଵ𝑂                                          (10) 

𝑊 = (𝑌்𝑌)ିଵ𝑂ିଵ𝑂                                      (11) 

𝑊 = (𝑌்𝑌)ିଵ                                                 (12) 

𝑊 = 𝑌ିଵ(𝑌்)ିଵ                                             (13) 

𝑊𝑌் = 𝑌ିଵ                                                    (14) 

𝑊𝑌் = 𝑋                                                        (15) 

     Notably, the loss functions in Table I are responsible for the 
end values of matrices X that approach pseudoinverse matrices 
with acceptable accuracy. 

 

IV. EVALUATION OF RESULTS 

      The performance of both Formulation 1 and Formulation 2 
is evaluated by counting the number of digits that match 
between the elements of the pseudoinverse matrix using the 
numerical Moore-Penrose algorithm and the one given by the 
neural network. This evaluation is presented visually as whisker 
graphs. Figures 2 and 6 compare the effect of using either a 
uniform or a normal distribution in the entries of the matrices 
for computing their pseudoinverse, where the uniform one 
presents the best performance. Figures 2-5 show the results for 
the first formulation meanwhile, Figures 6-9 present results for 
the second formulation. 
     For original matrices Y, whose entries are in [0, 1], this 
neural method does not converge. The solution is to transform 
them into matrices with entries in [-1, 1]. The following 
equations sequence (16-19), demonstrates the supporting 
transformation which helps to find Y+. Where, Z is an auxiliary 
and arbitrary matrix, whose entries are random in [-1, 1]. 
 
 

𝑌 = 𝑌𝑍(𝑍)ା                                         (16) 

(𝑌)ା = (𝑌𝑍(𝑍)ା)ା                                (17) 

(𝑌)ା = ((𝑍)ା)ା(𝑌𝑍)ା                          (18) 

𝑌ା = 𝑍(𝑌𝑍)ା                                      (19) 

 
     Using the new matrix YZ, whose entries are now in [-1, 1], 
its pseudoinverse (YZ)+ can be computed by the neural network. 
Therefore, the pseudoinverse matrix Y+ is obtained by 
multiplying (YZ)+ by Z.  
 
 

 
Fig. 2. Effect of Uniform and Normal distribution in the entries of matrices 
with a 200x50 dimension. Entries are in [-1, 1]. 
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Fig. 3. Effect of the number of epochs in a matrix with a 200x50 dimension. 
Entries are random in [-1, 1].           

 

Fig. 4. Effect of the matrix dimension. Entries are random in [-1, 1].  

 

Fig. 5. Effect of the matrix dimension. Entries are random in [0, 1]. 

 

Fig. 6. Effect of Uniform and Normal distribution in the entries of matrices 
with a 200x50 dimension. Entries are in [-1, 1]. 

 

Fig. 7. Effect of the number of epochs in matrix with a 200x50 dimension. 
Entries are random in [-1, 1]. 

 

Fig. 8. Effect of the matrix dimension. Entries are random in [-1, 1]. 
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Fig. 9. Effect of the matrix dimension. Entries are random in [0, 1]. 

 

Some extra details of the above results follow. 
 
     Figures 2 and 6 deal with two types of distribution: random 
uniform and Normal. Both generate the entries of the matrices 
in [-1, 1] and, the media and the standard deviation are 0 and 
0.3, respectively for the Normal case. 
Figures 3 and 7 show the effect of the number of epochs for a 
200x50 dimension matrix, whose entries are random and 
uniform in [-1, 1]. 
     Figures 4 and 8 present the same number of matching digits 
i.e. 15, which is obtained with 2500, 2000, 1500, and 1000 
epochs for matrices whose dimension is 20x5, 50x10, 100x25, 
and 200x50, respectively. 
     Figures 5 and 9 were obtained with 500 epochs for matrices 
whose entries are random and uniform in [0, 1]. 
 
     The graphical results in all Figures indicate that the number 
of matching digits is in the range between 12 and 15, which is 
equivalent to a Frobenious value lower than 1x10-30. The 
obtained accuracy is acceptable for a wide set of applications, 
which might include the implementation of both the training 
algorithm and the neural network with FPGA technology. 
 

 

V. DISCUSSION 

     The objective of this work was to present a series of 
numerical results from the training of single-layer linear neural 
networks for approaching pseudoinverse matrices with good 
accuracy relative to their numerical representation with 
standard computing systems. This objective was reached due to 
the training algorithms available from machine learning 
frameworks. The strategy was established via linear algebra 
principles that relate matrices, in this case proposing 2 
formulations, which are arbitrary but certain. Moreover, to 
evaluate possible trends in the final accuracy, the effect of the 
following factors was considered. 

1. A normal o Gaussian distribution against a uniform 
distribution of the entry values of the matrices. 

2. Number of training epochs. 
3. Matrix dimension. 
4. The combination of the above. 

    And, the Figures 2-9 are a graphical presentation of these 4 
points. From these Figures we can choose those ones whose # 
of matching digits is large and combine them properly as a 
criterion to get the best performance. This task is left open to 
further research. 
. 

VI. CONCLUSIONS 

     The authors presented an exploration of the usefulness of the 
gradient descendent training method Adamax, on single-layer 
neural networks for computing pseudoinverse matrices. Two 
formulations were established by linear algebra principles and 
proofed numerically leading to acceptable accuracies. 
Moreover, the TensorFlow framework with Keras library 
reduces time analysis for large dimension matrices. 
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