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Abstract—In order to perform the diverse tasks of deep 

learning, different models of neural networks have been proposed, 

and for several years now many deep neural networks have been 

developed for a variety of uses. In general, the labor of training 

these networks is the most challenging part of this methodology, 

and is by far the most time consuming, both in terms of effort 

required to configure the process and computational complexity 

required to perform it. To relieve this process, pre-trained models 

have been made available that already learned to extract powerful 

and informative features from big sets of images, thus reducing 

training time for particular problems, but, given the large number 

of options, it would consume a lot of time testing each of them. In 

this study, we tested the performance of nineteen pre-trained 

networks that are available for MATLAB and compared their 

performance for classification of ECG signals from MIT-BIH 

arrhythmia dataset. We report the main characteristics of these 

networks, training times, and performance for this classification 

job to serve as reference for their use by other researchers. 

Keywords—Pre-trained deep models, MIT-BIH database, 

arrhythmia classification, deep learning. 

I. INTRODUCTION 

Deep learning is a branch of machine learning, which in turn 
is a subset of Artificial Intelligence (AI) whose objective is to 
enhance machines capacities for tasks such as classification, 
recognition, detection, and description, imitating human skills. 
The phrase deep learning refers to machine learning algorithms 
that use a series of steps, or layers, of computation [1][2]. these 
systems are called “deep” only because of their appearance 
when are drawn stacked up vertically. 

If there is a state-of-the-art algorithm that resolves a problem 
with the utmost accuracy, it can be used indirectly to resolve 
other related problems. A network can be trained with such 
algorithm in a lab with powerful machines and plenty of 
resources, and take the necessary time to get an optimal 
performance, then if this trained network is available for external 
users, they won’t need to train it so meticulously to obtain 
remarkable results. It will only be necessary replacing some 
layers of the network, and focus the training on this new layers 
instead of the whole network, saving computing resources, time, 
and money. This procedure is called ‘Transfer Learning’. 
Transfer learning has been described for a long time [3], but its 

usage in deep learning has happened just recently. Decaf [4] and 
Overfeat [5] are the first feature extractor networks published 
off-the-shelf. The first one is based on AlexNet [6], the latter is 
a custom architecture. Both were pre-trained on ImageNet [7] 
and offer general features for computer vision jobs. Since then, 
many models have been developed with different capacities and 
configurations. 

Deep Learning Toolbox of MATLAB handles several pre-
trained deep networks with different characteristics such as 
accuracy, speed and size. Picking one of them normally is a 
tradeoff among these characteristics. MATLAB’s website 
section for Pre-trained Deep Neural Networks [8] has nineteen 
pre-trained models available to be installed in MATLAB 
platform as well as their respective original references. These 
models are briefly described in Table 1, and they are those that 
we tested in our study, so other researchers have a preliminary 
reference for using them, and have a better idea about their 
accuracy, training times and general performance. 

II. MIT ECG ARRHYTMIA DATABASE 

We used MIT-BIH Arrhythmia database (CD edition) as a 
source for medical ECG signals [9]. This is a reference in many 
papers found from literature. The database contains 48 half-hour 
two-channel ECG recordings from 47 patients recorded between 
1975 and 1979. Signals are digitized at 360 samples per second 
per channel (2 channels per record) and has 11-bit resolution 
over a 10 mV range. Two or more cardiologists, working 
independently, labeled MIT-BIH Arrhythmia database. 
Annotation for each heart beat has been placed at the R-wave 
peak. Therefore, the exact location of R-wave peak can be seen 
from the timestamp of the label and there is no need of QRS 
detection algorithm. 

MIT-BIH Arrhythmia database signals are annotated using 
23 labels as shown in Table 2. We focused our study in 
pathologies that had at least around 1000 beats. Then we chose 
six cardiopathies and normal beats for the classification 
problem, they were beats labeled A, F, f, L, N, R and V. In order 
to have a balanced amount of beats, we took the total F and f 
beats, and for the others we took similar quantities from each 
record to complete roughly 1000 beats for each class. Our 
dataset was defined as follows: A=1032 beats, F=803 beats, 
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f=982 beats, L=1064 beats, N=1200 beats, R=1085 beats and 
V=1539 beats. 

TABLE 1. Pre-trained MATLAB deep models. 

 

TABLE 2. Labels used in MIT-BIH Arrhythmia database.  

Symbol Description Number of events 
A Atrial premature beat 2546 
a Aberrated atrial premature beat 150 
E Ventricular escape beat 106 
e Atrial escape beat 16 
F Fusion of ventricular and normal beat 803 
f Fusion of paced and normal beat 982 
J Nodal (junctional) premature beat 83 
j Nodal (junctional) escape beat 229 
L Left bundle branch block beat 8075 
N Normal beat 70399 
Q Unclassifiable beat 28 
R Right bundle branch block beat 7259 
S Supraventricular premature or ectopic 

beat (atrial or nodal) 
2 

V Premature ventricular contraction 11783 
x Non-conducted P-wave (blocked APC) 193 
+ Rhythm change 1290 
~ Change in signal quality 616 
| Isolated QRS-like artifact 132 
/ Paced beat 7033 
[ Start of ventricular flutter/fibrillation 6 
] End of ventricular flutter/fibrillation 6 
! Ventricular flutter wave 472 
“ Comment annotation 437 

 

III. PROPOSED METHOD 

There have been several comparative reports for pre-trained 
neural networks e.g. [10][11], but they focus their analysis on 
chronological or relevant networks and for contribution in some 
relevant field, so excluding some models. Here we realized a 
study bearing in mind all the nineteen pre-trained networks 
available as part of MATLAB, to give to researchers interested 

in using these models, an idea of what can they obtain by using 
one model or other. 

In order to realize our study, we selected MIT-BIH database 
because it is a well-known reference in many works and is 
available for anyone. Many researchers using MIT-BIH 
database have developed their classification procedures by 
considering the records as digitized signals. The pre-trained 
networks we worked with, are developed to use images as input, 
so we settled our tests based on the procedure described in [12]: 
As pre-processing stage (Fig. 1), we converted ECG signals 
from one channel into ECG images by plotting each ECG beat 
in an individual 664 x 520 image, centering the Q-wave and 
taking 150 samples before and after it to include P and T waves 
in the image. Images were separated according to their labels. 
We obtained 7705 images classified as shown in Fig. 2. 

Fig. 1. Pre-processing stage to obtain ECG images from datataset. 

 

 

Fig. 2. Example of beats for the seven classes A, F, f, L, N, R and V. 

With exception of nasnetlarge (that ran using CPU rather 
than GPUs), and vgg16 and vgg19 (that ran with batch size = 
100), we trained all networks with the following configuration: 
randomly took 70% images for training and 30% for validation, 
optimization method: Adam, 6 training epochs, batch size = 10, 
initial learning rate = 3×10-4, no freezing layers, use of an 

Network Main contribution Depth
Parameters 

(Millions)
Image Input Size

alexnet
Deeper than initial CNN architecture LeNet and 

uses relu and overlapping pooling
8 61 227-by-227

darknet19

Faster and more accurate than Darknet 

Reference Model. Backbone of YOLOv2 

approach.

19 20.8 256-by-256

darknet53
Residual blocks, skip connections, and 

upsampling layers. Backbone for YOLOv3.
53 41.6 256-by-256

densenet201 Cross-layered information flow 201 20 224-by-224

efficientnetb0
Scaling method to scale all dimensions of 

depth/width/resolution a compound coefficient.
82 5.3 224-by-224

googlenet
Introduced block concept, split transform, and 

merge idea
22 7 224-by-224

inceptionresnetv2

Processed at reasonable cost for scenarios 

where memory or computational capacity is 

inherently limited

164 55.9 299-by-299

inceptionv3
Bottleneck issue is sorted and small filter size 

is added
48 23.9 299-by-299

mobilenetv2 Based on an inverted residual structure. 53 3.5 224-by-224

nasnetlarge Improves generalization in the NASNet models. * 88.9 331-by-331

nasnetmobile
Design of a search space (the "NASNet search 

space") which enables transferability.
* 5.3 224-by-224

resnet101 Better accuracy than resnet50 101 44.6 224-by-224

resnet18
Modularized architectures using residual 

learning
18 11.7 224-by-224

resnet50 Better accuracy than resnet18 50 25.6 224-by-224

shufflenet

Utilizes two operations, pointwise group 

convolution and channel shuff le, to reduce 

computation cost.

50 1.4 224-by-224

squeezenet
Achieves AlexNet-level accuracy on ImageNet 

with 50x fewer parameters.
18 1.24 227-by-227

vgg16 Uses small kernel size 16 138 224-by-224

vgg19 19 layer version of Vgg16 for larger images 19 144 224-by-224

xception
Depth-wise convolution followed by a point- 

wise convolution
71 22.9 299-by-299

* The NASNet-Mobile and NASNet-Large networks do not consist of a linear sequence of modules.
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augmented image datastore to automatically resize the training 
images, additional augmentation operations to perform on the 
training images: randomly translate them up to 30 pixels and 
scale them up to 10% horizontally and vertically in order to 
prevent overfitting. The last three layers of all the pre-trained 
networks are configured for 1000 classes. These three layers 
must be replaced to fit the new classification problem.  

All the training processes were realized in a computer with 
the following features: 64-bit Microsoft Windows 10 Pro, 
MATLAB v. 2022a, CPU Intel Core I7-9700 @ 3.00 GHz 8 
Cores, 32 GB physical memory, NVIDIA card model GeForce 
RTX 3060 with 12 GB memory and 3584 GPU cores. 

IV. RESULTS 

For evaluating our results, it was plotted the training 
progress for each model. With the fine-tuned network the 
validation images were classified, and then calculated the 
classification accuracy. With these data, it was created a 
confusion matrix to assess the results. These confusion matrixes 
are illustrated for two networks in Fig. 3. 

(a) 

(b) 

Fig. 3. Confusion matrixes for a) googlenet b) nasnetlarge. 

The corresponding training progress for these two models, 
are shown in Fig. 4. 

At least 2 runs for each model were performed to verify 
consistency of the outcome; due to the long times that some 
models consume for training, only two runs were carried out for 
some of them, the rest were simulated up to 5 times. It is 
important to remark that, as each run uses random information 
for training (the selected images for training and validation, 
augmentation operations, and initial parameters for the replaced 
three layers), each time it is carried out training, the values vary, 
so we report the worst and the best case that we obtained with 
each network in terms of accuracy. This is shown in Table 3. 

TABLE 3. Accuracy and run times for pre-trained networks (sorted by 
worst/best case of accuracy). 

Network Accuracy (%) Run time 

alexnet 85.90 
90.70 

4’20” 
4’18” 

darknet19 92.39 
92.65 

12’17” 
12’12” 

darknet53 91.96 
92.99 

40’50” 
40’39” 

densenet201 86.72 
92.86 

162’43” 
161’29” 

efficientnetb0 93.17 
95.72 

59’17” 
58’40” 

googlenet 90.79 
95.16 

11’57” 
11’52” 

inceptionresnetv2 96.11 
96.28 

145’53” 
170’53” 

inceptionv3 96.11 
97.75 

48’54” 
48’56” 

mobilenetv2 93.94 
96.41 

26’29” 
26’17” 

nasnetlarge 94.07 
95.11 

2597’51” 
2559’49” 

nasnetmobile 93.34 
96.45 

239’23” 
234’20” 

resnet101 92.86 
95.24 

60’55” 
62’38” 

resnet18 91.09 
95.37 

7’14” 
7’14” 

resnet50 92.95 
94.25 

25’41” 
25’27” 

shufflenet 94.42 
95.42 

23’59” 
23’31” 

squeezenet 89.49 
90,79 

4’59” 
4’57” 

vgg16 87.02 
92.21 

18’55” 
18’27” 

vgg19 80.10 
88.75 

21’56” 
21’25” 

xception 93.73 
96.80 

38’1” 
38’3” 

 

As we can observe in both confusion matrixes, A and f beats 
(f is termed f1 in the figure), present the smaller classification 
errors, whilst F and N beats show the biggest ones. This behavior 
was observed for most of the networks. 

V. CONCLUSIONS 

From results shown in Table 3, we can see that biggest 
networks take the longest training times but, counterintuitively 
do not always achieve the best accuracy values. Nasnetlarge 
network has the largest training times but their accuracy is 
comparable with efficientnetb that has considerably less 
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parameters. Small networks show the worst performances, but 
they have short training times, so for problems when it should 
be necessary repeating several simulations, and it is not required 
a high performance, they could be an option. 

We did not make any special adjustment for training 
parameters and take default values for all the cases, since our 
goal was to test all of the networks with the same conditions; 

however, to increase the performance of one network for a 
specific problem, it may be essential changing some parameters 
as training epochs, learning rate, optimization method, etc. 

This is a preliminary study for comparing these nineteen 
models; due to the required time for simulating each network, 
we did not perform a larger number of runs, but in a subsequent 

(a) 

(b) 
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work, we consider producing an adequate number of runs so we 
can report a complete statistical analysis.  

Finally, it is significant noticing that all of the networks had 
high accuracy for the proposed problem, even the worst of them 
reached above 80% in just a run of 6-epochs, so we can conclude 
that pre-trained networks represent a good option when it may 
be important saving time. 
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