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This Letter presents meaningful results that demonstrate the reduction
of dimensionality by spiking neural networks (SNNs) on bench-
marking data. This experimental scheme includes metaheuristics,
namely, the artificial bee colony algorithm (ABC algorithm) for
finding optimal conductance values in the SNNs. Therefore, the objec-
tive function in the used ABC algorithm leads the SNNs to compute
the principal component analysis (PCA), efficiently. The eigendecom-
position of the information drawn by the SNNs in the training phase is
the base of the formulated objective function. In these experiments, the
Izhikevich model represents the spiking neurons, which have bio-
logical plausibility with parameters for reproducing a uniform firing
rate. The visualisation of clusters in the 3D PCA space, whose
sample values are compared with the PCA function in Matlab, is
also shown; this comparison demonstrates an acceptable error in the
MSE sense.
Introduction: Spiking neural networks (SNNs) represent the third
neural model generation. They define both neural and synaptic func-
tions, which are studied as dynamic systems in neuroscience [1] and
computing entities in engineering [2]. In principle, the value of the
synaptic conductance between neurons in the SNN can modify its mag-
nitude according to the Spike-Timing Dependent Plasticity (STDP) rule
[3]. In that biological scenario, the SNN can do correlation tasks over
particular spiking patterns and can also perform principal component
analysis (PCA) based on extended Hebbian rules [4]. The purpose of
this Letter is to demonstrate that a single-layer SNN computes by archi-
tecture the first three principal components of the training data and that
the artificial bee colony (ABC) algorithm finds the values of the synaptic
conductance efficiently in a non-supervised manner. The objective func-
tion of the ABC algorithm uses statistical information from the SNN, i.e.
the first three proportions of the total variance.

Training SNNs with metaheuristics: There are exploratory works for
showing the possibility to train SNNs using metaheuristic methods,
some of which are inspired by the collective and intelligent behaviour
of specific living beings found in nature. They can combine diversifica-
tion and intensification in their search for finding optimal solutions,
jointly with an objective function. A representative case is given in
[5], where the classic ABC algorithm takes the part of one supervised
training process. On the other hand, advanced optimisation for design-
ing SNNs based on evolutionary metaheuristics has also been proposed
[6]. Multi-layer neural models, but with continuous-sigmoid neurons,
may follow metaheuristic strategies [7]. In particular, the classic ABC
algorithm achieves efficient optimisation in a broad set of engineering
complex problems [8], becoming suitable in this Letter to train SNNs
for PCA.

Classic ABC algorithm: It is efficient for solving global optimisation
problems related to multi-dimensional functions compared with other
metaheuristic approaches. It finds the solution vector x that minimises
the objective function F x( ), where x = x1, x2, . . . , xp

( )
. The values

for the elements of x are real numbers and restricted to some interval.
The parameters of the classic ABC algorithm in this work are in Table 1.

Table 1: Values of parameters used in the classic ABC algorithm
iteration
RONICS LET

Authorized li
1000
bee colony
 6
local search abandoning limit
 200
upper bounds
 10
lower bounds
 0
Objective function: The objective function should contain valuable
information about the problem, which is subject to the optimisation
process by the ABC algorithm. In this Letter, the objective function sup-
ports a non-supervised process, where it depends on the proportion of
total variance πk, which measures the quality of the kth principal com-
ponent [9]. Therefore, it is suitable to choose π1, π2, and π3 as the
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optimisation parameters, leading to the below objective function:

F = 1/p1 + 1/p2 + 1/p3

where π1, π2, and π3 are computed as follows:

p1 = l1/ l1 + l2 + l3( )
p2 = l2/ l1 + l2 + l3( )
p3 = l3/ l1 + l2 + l3( )

In these equations, λ1, λ2, and λ3 are the first three eigenvalues of the
correlation matrix of the data provided by the SSN under training.

The proposed objective function decreases to a minimum until π1, π2,
and π3 get their optimal value.

The eigenvalues λ1, λ2, and λ3 are computed in Matlab using the
Singular Value Decomposition (SVD) method applied to the matrix of
values provided by the SNN. The SVD method establishes the product
of three matrices, namely USVT; where U and V are the left and right
singular matrices, respectively. S is a diagonal matrix, whose elements
are sorted from-high-to-low, i.e. s1 . s2 . · · · . sq . 0.

Finally, the elements: s1, s2, . . . , sq, which are called singular values,
are related to λ1, λ2, and λ3 as given by the following equations:

l1 = s21
m− 1

, l2 = s22
m− 1

, l3 = s23
m− 1

where m is the number of voltage vectors forming a training matrix.

Experimental SNN: Fig. 1 depicts the SNN in this Letter; there are three
neurons: N1, N2, and N3, whose firing rates (in spikes/s) are FR1, FR2,
and FR3, respectively. They receive the synaptic currents (in pA): I1, I2,
and I3. The voltage vector (in volts) ei = ei1, ei2, ei3, . . . , ei n−1( ), ein

[ ]
is

read via the synapses, which are represented by the conductance vectors
(in Ω−1): s1 = s11, s12, . . . , s1n[ ], s2 = s21, s22, . . . , s2n[ ], and
s3 = s31, s32, . . . , s3n[ ].
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Fig. 1 Experimental SNN with three Izhikevich neurons: N1, N2, and N3

whose synaptic currents are I1, I2 , and I3, respectively

The whole set of training vectors {ei, i = 1, . . . , m} defines a
training matrix of dimension m× n with Q classes to be visualised in
clusters in the PCA space. The synaptic currents I1, I2 , and I3 are
given by the dot products: I1 = ei s1( )T, I2 = ei s2( )T, and
I3 = ei s3( )T, where ( )T denotes transpose.

Model of the Izhikevich neuron: This model is widely accepted for
developing neuromorphic systems due to both its biological plausibility
and its computational efficiency [1]. This model has the equations
below:

C
dV

dt
= k V − Vrest( ) V − Vth( ) − U + Isyn

dU

dt
= a b V − Vrest( ) − U[ ]

where V and U are the membrane potential and the membrane recovery,
respectively. The synaptic current Isyn fixes the spiking rate. There is a
restriction for V, given as if V ≥ 35mV, then V = c and U = U + d.
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Table 2 presents the parameters and their corresponding values that
were used in the experiments in this Letter for uniform spiking.

Table 2: Values of parameters used in the Izhikevich model
Vrest
 −60 mV
Autho
a

rize
0.03 ms−1
Vth
 −40 mV
 b
 −2

Vpeak
 35 mV
 c
 −50 mV
C
 100 pF
 d
 100 pA
Scheme of the training phase: Fig. 2 shows the numerical processes for
one epoch of the training phase, where it starts reading the training
matrix and ends changing the conductance values of the SNN.
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Fig. 2 Numerical processes in one epoch of the training phase

Experimental sessions: A visual presentation of the PCA with the first
three components PC1, PC2, and PC3 on three types of experimental
data demonstrates the effectiveness of the proposed training method.
These three experimental sessions use available data sets from [10],
namely, gas detection, wines classification, and numeral handwriting.
In order to facilitate the training process, the spiking neurons were
biased by a constant current of 55 pA, which sets their lowest firing
rate at one spike/s. The values of the training data and those in the
PCA space were normalised. Table 3 shows the parameters of the train-
ing matrices.

Table 3: Dimension of training matrices and number of classes
Session no.
 Data set description
d licensed us
m

e limite
n Q
1
 gases detection
 360
 8 3
2
 wines classification
 900
 11 2
3
 numeral handwriting
 7494
 16 10
Session No.1 refers to electrical measurements on oxide sensors
to detect dangerous gases, namely carbon monoxide, methane, and
ethanol. The sensors transduce concentration (parts-per-million) into
resistance (in Ω), whose value is normalised by a reference resistor.

Session No. 2 deals with a collection of red and white wines from 20
industrial manufactures. Both wines were evaluated concerning their
quality according to fixed acidity, volatile acidity, citric acid, residual
sugar, chlorides, free sulphur dioxide, total sulphur dioxide, density,
pH, sulphates, and alcohol.

Session No. 3 takes into account the pixel positions that were
activated by 44 individuals writing the numerals from ‘0’ to ‘9’ on a
tablet with an array of 500 × 500 pixels.

Results by the SNNs: Figs. 3–5 show in a 3D space the first three
components: PC1, PC2, and PC3 that were computed by the SNNs
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that were trained with the classic ABC algorithm for every experimental
session.
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Fig. 3 PCA space obtained in session No. 1
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Fig. 4 PCA space obtained in session No. 2
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Fig. 5 PCA space obtained in session No. 3

For comparing the numerical values of these experimental results
with those from the PCA function in Matlab, it was evaluated the
mean square error (MSE) score according to the equation below:

MSE = 1

NS

∑
(EDXi − EDYi)

2

where EDXi and EDYi are the Euclidian distances in both PCA spaces,
i.e. those created by the SNN and by Matlab, respectively. EDXi

and EDYi measure the distance between the centroid of the cluster,
and the samples of the same class. The discrete index i counts the
samples, and NS is the number of them. The centroids of the clusters
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were found with the k-means function in Matlab. We computed values
of the MSE score for all the experiments, which were always below
0.09; this quantity shows that the different SNN architectures con-
sidered, i.e. 8:3, 11:3 and 16:3, approach the PCA space with acceptable
accuracy. Likewise, the synaptic conductance values found by the ABC
algorithm were positive real numbers in [0, 100], and the number of
epochs of the training phase was always lower than 2000 in all the
experimental sessions.

Conclusion: This Letter introduced specific SNNs to compute accurate
PCA spaces. The proposed metaheuristic training method might help to
program neuromorphic hardware for visualising clusters of the same
class contained in experimental information of high dimensionality.
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