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Abstract—In this work, an improvement is made to eye
fundus images to highlight the characteristics associated either
with diabetic retinopathy and glaucoma pathologies, considering
observations collected from specialized medical personnel, which
are intended to facilitate diagnosis. Migration from the RGB
(Red-Green-Blue) color space to the CIE L*a*b* space, defined
by the Commission International d’Eclairage (CIE), is proposed
for image processing. Given this migration, the intensity levels of
pixel illumination are analyzed and modified by employing two
fuzzy inference systems (FIS) to improve the image’s contrast and
highlight the details associated with these pathologies. The results
section presents the relevant data obtained in this proposal. With
them, it is demonstrated that applying fuzzy logic in processing
eye fundus images is a viable option to support medical personnel
in elaborating a diagnosis, considering that fuzzy schemes had
been scarcely used for this type of image.

Index Terms—fuzzy inference system, image enhancement, eye
fundus image, diabetic retinopathy, glaucoma.

I. INTRODUCTION

One of the most relevant advances in ophthalmology is
the eye fundus images capturing, called retinography. This
study allows to analyze the inner tissue of the eye, which
is responsible for interpreting changes in lighting and, in
short, is how the process of vision occurs. Through this
type of photography, it is possible to observe and analyze
the characteristics of the different areas of the eyeball tissue
including: macula, fovea, and optic nerve, mainly; and it is
suitable to observe the distribution of the blood vessels as well.
This allows the specialized physician to detect alterations in
these areas and generate a diagnosis, such as diabetic retinopa-
thy, glaucomatous papilla, age-related macular degeneration,
retinal detachment or choroidal nevus.

Retinography allows to extract a lot of significative in-
formation; however, not all images tend to have the highest
quality and some details are difficult to observe with the naked
eye even when zoomed in. Image processing is the propper
solution since its main objective is to improve picture quality.
In medical images, this is translated into displaying the details
of the interest areas more clearly and extracting as much
information as possible, so a doctor or specialist will be able

to use it, facilitating the diagnosis of any pathology or rely on
them in assisted procedures by images.

Digital images are two-dimensional representations of nu-
merical matrices, where each cell is known as a pixel which
can represent information in both grayscale and color scales;
in the latter, each pixel is formed by a triplet of numerical
data where each one corresponds to a channel. According
to the color model used, these arrays contain and organize
the image information for its correct interpretation. There are
several color spaces, of which one of the most used is RGB
(Red-Green-Blue).

In recent years, different works have been presented [1]–[4]
which main idea is to improve the sharpness and contrast of
eye fundus images, seeking to emphasize features or specific
regions within the images. The regions or features of interest
vary according to the pathology to be analyzed, so proposals
have arisen based on the morphological modification of the
images [5], modifications based on the initial color space in
the RGB capture [6], among other.

For this work, it has been considered, for the processing
of the images, to highlight the signs associated with dia-
betic retinopathy and glaucoma pathologies, through contrast
enhancement, considering the observations collected by the
medical staff. For instance, in diabetic retinopathy the main
signs that can be observed in the images are hemorrhages,
aneurysms and microaneurysms, exudates, and neovascular-
ization; on the other side, for glaucoma, being a disease
that damages the optic nerve, the main signs appear on it,
such as the abnormal emergence of blood vessels and the
distinctive physiognomy of the optic nerve where the optic
disc and the optic cup are located and, apart from an abnormal
physiognomy, the non-proportional distance between them
becomes relevant; but also, as with diabetic retinopathy, a sign
of glaucoma is neovascularization.

Alternatively, contrast enhancement is a type of image
processing where the dynamic range of the distribution of
pixel values is increased [7], which improves the ability to
see details in an image. It is essential to differentiate between
the dynamic range of a channel and the dynamic range of the

978-1-6654-5508-4/22/$31.00 ©2022 IEEE

20
22

 1
9t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 E
le

ct
ric

al
 E

ng
in

ee
rin

g,
 C

om
pu

tin
g 

Sc
ie

nc
e 

an
d 

A
ut

om
at

ic
 C

on
tro

l (
C

C
E)

 | 
97

8-
1-

66
54

-5
50

8-
4/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
C

E5
67

09
.2

02
2.

99
75

96
7

Authorized licensed use limited to: CINVESTAV. Downloaded on January 16,2023 at 20:34:44 UTC from IEEE Xplore.  Restrictions apply. 



distribution of pixel values. The former considers all values
that a pixel can take; for example, in the RGB space, this
range takes values from 0 to 255 in its three channels; while
in the second it is only contemplated how these values are
distributed in a specific image. Due to the above, this process
is carried out on a single channel; consequently, if working on
the RGB color space, it is necessary to convert the image to
grayscale. This is one reason why this space is not ideal for
image processing, as other spaces are.

In medical images, including eye fundus images, it is
essential to maintain color hue in all regions of the image, as
a variation over it could result in an incorrect diagnosis. Due
to this, it was chosen to work on the color space defined by
the Commission International d’Eclairage (CIE) in 1976: CIE
1976 L*a*b* (CIELAB); which expresses the color with three
components: ”L*”, that represents luminosity in range from 0
to 100; and “a*” and “b*” which represents the opposite colors
red and green and yellow and blue, respectively, as a relative
axis. This allows to isolate the color in two channels and work
only on the lighting channel.

Several algorithms perform contrast enhancement, of which
histogram equalization (HE) and its derivatives are among the
most basic and widely used methods [8]. However, although
they have been shown to have favorable results by increasing
contrast, they are unsuitable for medical imaging because they
tend to hit both the saturation and the minimum values. In the
CIELAB space, the saturation values are close to 100, and the
minimum values are close to 0; this means that, with these
numerical values, there are very light and very dark tones.
Due to this, in this work, it is proposed to use a contrast
enhancement method based on fuzzy logic [9]–[11] which,
when interpreting and considering the knowledge of the expert
staff, avoids this problem.

Fernandes et al. [12] propose using two fuzzy inference
systems (FIS) to analyze images of everyday scenes based on
the RGB color space. The first FIS has as input parameter
the global standard deviation of the intensity levels of the
pixels in the grayscale and presents as output data the variation
parameter x, which is used by the second FIS to generate the
values of output sets of type singletons.

In this work a similar scheme is followed, but it is treated
with eye fundus images, which presents a high value of
contrast due to the dark areas outside the eyeball tissue,
generated by the acquisition method itself; therefore, for the
analysis of this type of images, it is proposed an expansion
in the SD range. Additionally, the use of Gaussian bells is
considered as input membership functions for the second FIS,
which allows smoothing the abrupt tones variations in the
regions of interest of the images.

II. METHODOLOGY

This work aims to support medical personnel in the diag-
nosing of pathologies in eye fundus images; therefore, the
characteristics that the image should have so that they could
interpret them were considered. These characteristics are:
maintaining the color level in the blood vessels, enhancing

the contrast between the different areas present in the image,
and avoiding color saturation since this leads to regions of
white or very dark tones.

Generally, the initial color space of the images is RGB;
however, as mentioned above, this is not ideal for processing;
therefore, a migration to the CIELAB space was implemented
to work only on the L* channel in order to modify the dynamic
range of the distribution of pixel values and to be able to
preserve the colors by leaving the other two channels intact.

The method applied for contrast enhancement is based on
fuzzy logic, which was chosen due its ability to adapt to
the requirements in color modeling; for eye fundus image,
it is required a smooth contrast improvement in order to
preserve the hue of the colors and the sharpness of the regions
associated with optic nerve and macula, since the former is
the main area of analysis to detect alterations associated with
glaucoma and in the second is where those associated with
diabetic retinopathy are presented.

In this work, two zero-order Takagi-Sugeno type FIS were
used; the former is in charge of adjusting two singleton output
membership functions of the latter, according to the contrast
level of the input image. The importance of this FIS lies in
the fact that the original qualities of the images can vary a lot,
therefore not all images will need the same degree of contrast
enhancement, so an image with a low contrast balance will
require a higher adjustment than its counterpart.

Standard deviation (SD) is a measure that provides infor-
mation about the average dispersion of a variable [13]. In
digital images, the SD of pixel intensities is known as root
mean square contrast (RMS contrast) (1), since it indicates
how dispersed pixel values are in relation to the mean [14],
therefore if the SD of an image is high it means that it has
both light and dark tones, otherwise the tendency will be to
have very similar tones throughout the image. In other words,
it is directly proportional to contrast, so if an image has a high
SD, it will have a high contrast. In short, SD is an indicator
of image contrast and because it was chosen as the input
parameter for the first FIS, whose calculation was performed
on the normalized illumination channel.

SD =

√√√√ 1

MN

N−1∑
i=0

M−1∑
i=0

(Ii,j − I)2 (1)

From (1), Ii,j denotes the intensity of the pixel (i, j) of the
matrix that represents the image of size M ×N and I is the
average of the intensity of all the pixels.

From the analysis of the SD or RMS contrast values calcu-
lated in eye fundus images, three types of input membership
functions were used in both FIS: Z function (2), bell function
(3) and S function (4).

Z(σ) =
1

1 + eα(σ−β)
(2)

B(σ) = e−
1
2 (

σ−γ
δ )2 (3)
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S(σ) =
1

1 + e−α(σ−ϵ)
(4)

Where, adapting them to the proposed universe of discourse,
σ denotes the SD, α the slope of Z(σ) and S(σ), β the
midpoint of the slope of Z(σ), γ the center of B(σ), δ2 the
width of B(σ) and ϵ the midpoint of the slope of S(σ).

This universe of discourse represents the variations in the
SD (RMS contrast) values that can exist in different eye
fundus images. For its fuzzification, three linguistic labels
were considered: “low”, “medium” and “high”, as shown in
Fig. 1.

Fig. 1: First FIS input membership functions.

For the defuzzification, which will give us the crisp value x
used by the second FIS, the Weighted Average Method (WAM)
was used, so the output its given by (5).

x =
(µ11 · f11) + (µ12 · f12) + (µ13 · f13)

µ11 + µ12 + µ13
(5)

Where µ11, µ12 and µ13 are membership values obtained
by evaluating (2), (3) and (4), respectively; and f11, f12 and
f13 are the output fuzzy singleton values. Thereby, IF-THEN
rules were defined as follow:

1) IF low THEN f11
2) IF medium THEN f12
3) IF high THEN f13

The second FIS performs image enhancement, which has
the value of the normalized pixel of the L* channel as input
parameter; in a nutshell, it has the original value of the
illumination as input and the value resulting from the process
as output, which will be assigned to that same pixel. The
process is done pixel by pixel, creating a new channel (L’*)
with the new values of each pixel.

In this FIS, the universe of discourse represents all the
possible illumination values that each pixel can have. As
mentioned before, L* channel can take values from 0 to 100,
however, being normalized, it was set in the range of 0 to
1. For its fuzzification, the following linguistics labels were
used: black, dark grey, medium, light grey and white; whose
input membership functions, as in the previous FIS, are defined
by the functions Z, bell and S. Z function was used for the
linguistic variable black, the S function for white and the bell
function for the rest, as shown in Fig. 2.

Fig. 2: Second FIS input membership functions.

To achieve suitable contrast enhancement for these images,
both the boundary values and hues close to the mean were
kept, and the other values, which represent medium-light and
medium-dark tones, were adjusted towards their closest bound-
aries. Namely, values below the medium will represent darker
tones and the values above it will represent lighter tones,
avoiding reaching the saturation values. Therefore, seven IF-
THEN rules were defined as follows:

1) IF black THEN black.
2) IF dark grey THEN darker grey.
3) IF grey THEN grey.
4) IF light grey THEN lighter grey.
5) IF white THEN white.
6) IF dark grey THEN black.
7) IF light grey THEN white.
As seen in rules above, five output sets with their singleton

values were defined as shown below:
1) Black = f21
2) Darker grey = f22 = x
3) Grey = f23
4) Lighter grey = f24 = 1− x
5) White = f25

Where x is the adjustment parameter obtained from the
output of the first FIS (5).

For defuzzification, the WAM method was used again,
which allows, with rules 6 and 7, to have a sizeable increase
in contrast fulfilling the aforementioned conditions. So, the
output is given as follows:

output =

∑n
i=1 µ(I)2i · f2∑n

i=1 µ(I)2i
(6)

Where
∑

indicates the algebraic sum, n the number of
rules, µ(I)2i the membership value of the rule i and f2 its
output singleton value.

The process described in this section was developed using
python programming language, specifically Python 3.9.7; and
its flow diagram is shown in Fig. 3.

III. RESULTS

Images used in this work were taken from FAU database
[15], which contains 15 healthy images, 15 with diabetic
retinopathy and 15 with glaucoma. As mentioned in previous
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Fig. 3: Flow diagram for the proposed eye fundus image
enhancement.

section, image processing was performed on the normalized
L* channel of CIELAB color space. The calculation of the
RMS contrast was conducted by (1) and, from the analysis of
the results in all images, the universe of discourse of the first
FIS was established in the range from 0 to 0.3.

Table I shows the parameters of the input membership
functions used in both FIS and table II the output singleton
values.

TABLE I: Membership functions parameters

Membership Function Parameters Value

Z11
α 0.75
β 0.130

B12
γ 0.175
δ 0.035

S13
α 0.75
ϵ 0.210

Z21
α 0.75
β 0.10

B22
γ 0.25
δ 0.10

B23
γ 0.50
δ 0.10

B24
γ 0.75
δ 0.10

S25
α 0.75
ϵ 0.90

With the values shown in table II, the defuzzification
described by (5) results in the transfer curve in Fig. 4.

And for the second FIS, the defuzzification described by

TABLE II: Fuzzy singleton values.

Fuzzy singleton Numeric value
f11 0.10
f12 0.25
f13 0.35
f21 0.0
f22 x
f23 0.5
f24 1− x
f25 1.0

Fig. 4: First FIS transfer curve.

(6) will result in a different transfer curve for each image,
depending on the parameter x obtained by the first FIS. Fig. 5
shows the resulting transfer curves with three values of x: 0.1,
0.25 and 0.35.

Fig. 5: Second FIS transfer curves with three different values
of x.

In Fig. 4, it can be seen that input covers the entire range of
the universe of discourse and the output x has a range from
0.1 to 0.35. This means that for images with high contrast
the output of the first FIS will be close to 0.35 and 0.1 for
the opposite case. Hence, for images with low contrast, the
adjustment of midtones made by second FIS will be higher
because those tones below average should be adjusted to
values closer to 0 and those above average to values closer
to 1. This is confirmed by Fig. 5, since it can be seen that
the smaller the value of x, the steeper the slope; so, the pixel
adjustment will be greater and, consequently, there will be a
greater increase in contrast.

In order to evaluate the effectiveness of the proposed
method, it was applied to the 45 images in the database and
results were compared against two other image enhancement
methods: HE and mean preserving bi-histogram equalization
(BBHE) [16].

This comparison can be seen in Fig. 6, where 6a shows
the original image with diabetic retinopathy, 6b the resulting
image when applying HE, 6c BBHE and 6d the resulting
image when applying the proposed method. Additionally,
Fig. 7 shows the histograms of the L*-channel of these four
images.

The histogram of a digital image is a graphical representa-
tion of the tones distribution in that image, thus it is possible to
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observe its dynamic range in it, therefore, from its analysis it
is possible to obtain information on the contrast of the image.

(a) Original (b) HE

(c) BBHE (d) Fuzzy method

Fig. 6: Process comparison

Fig. 7: Histograms.

Visually in Fig. 6 and with the histograms in Fig. 7, it is
possible to notice that the processed images have a higher con-
trast than the original; however, three metrics were calculated
on L* channel of each image in order to make a numerical
comparison: the SD or RMS contrast, the Peak Signal-to-Noise
Ratio (PSNR) and the Measurement of Contrast Index (MCI).

As its name says, PSNR is the ratio between the maximum
possible power of a signal and the power of noise. In processed
images, PSNR is calculated considering the original image as
signal and the processed image as noise (7) and it indicates
the quality of the process [17], so a high PSNR value means
a good image enhancement quality, but to high values are
not desirable since it means that a lot of noise was added
to original image, and this may represent loss of information.

PSNR = 10 log(
MAX2

I

MSE
) (7)

In (7), MAXI is the maximum value a pixel can have and
MSE is the mean square error between original image and
the processed image, which is calculated as follows:

MSE =
1

MN

M∑
i=1

N∑
j=1

[Ii,j − Ji,j ]
2

Where M and N represents the image matrix size and Ii,j
and Ji,j the value of the i, j pixel of the original and the
processed image, respectively.

As mentioned before, SD in images provides information
about its contrast and is known as the RMS contrast. This
parameter is used to obtain the MCI, which is the ratio between
the SD of the processed image and the original, so values
greater than 1 indicates that the processed image has a higher
contrast than original. Therefore, the higher the MCI value,
the better contrast will be; however, very high values indicates
there is an over-improvement.

These three metrics were calculated on the four images
shown in Fig. 6 and results are presented in table III.

TABLE III: Comparison parameters.

Image SD MCI PSNR Medical opinion
Original 0.174 1.0 - Good
HE 0.237 1.360 15.270 Not suitable
BBHE 0.222 1.273 14.774 Not suitable
FIS 0.185 1.060 23.509 Very good

In order to have a more complete criteria of the proposed
method performance, the three methods: HE, BBHE and
fuzzy; were applied to each of the 45 images in the database
and the MCI and PSNR were calculated in all of them,
the results are shown in the graphs of Fig. 8 and Fig. 9,
respectively.

Fig. 8: MCI of processed images.

Fig. 9: PSNR of processed images.

In Fig. 8 it is observed that HE and BBHE generate images
with a similar level of contrast and, in general, both are higher
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than the fuzzy method; however, regarding the quality of the
process, Fig. 9 shows that both are widely surpassed by the
proposed method, presenting a considerably higher PSNR in
all images.

Based on medical staff´s recommendations, three aspects
have been considered to determinate if the image enhancement
is appropriate for this type of photographs. The former is the
intensity of light colors, that refers to when a saturated zone in
the image is represented by a white color, can falsely indicate
the presence of a zone with possible retinal detachment; that
is why, care must be taken that the image processing method
keeps a balance regarding the original image. This undesired
case is presented in the HE and BBHE, where is clearly seen,
both in Fig. 6 as in its histogram of Fig. 7, an excessive
saturation due to the math of the method.

The second aspect refers to the detail showed in the optic
nerve. For the glaucoma diagnosis the optic nerve physiog-
nomy is analyzed: the emergency of blood vessels, the optical
disc appearance and the distance between it and the optical
cup. These details are kept by the fuzzy method, while in
the others two methods there is a saturation in this zone that
impede an adequate diagnosis.

The last aspect implies not to lose detail in macula zone.
In the methods based on modification of histogram this is not
achieved since its contrast causes loss of information in the
area and when applying the fuzzy method the interest zone is
conserved with no alteration.

The three image enhancement methods have been presented
to medical specialists; from the collected observations, the
verdicts presented in the last row of table III are the trend
in terms of their comments and this prove that the fuzzy
logic-based method has a superior performance than other two,
and even turns out to be better than the original one. These
comments support the PSNR higher value in all images pro-
cessed with this method. This medical verdict is fundamental
since the work presented have the interest of applying image
enhancement in the medical field to facilitate the elaboration
of diagnostics in the evaluation of clinical cases.

IV. CONCLUSIONS

In this work, a fuzzy logic-based method for contrast
enhancement on digital eye fundus images has been presented
and its superiority in this task has been demonstrated against
traditional methods based on histogram modification, mainly
with two criteriums: the comments by the medical staff, which
suggest that fuzzy method improves the original image; and
with the PSNR results, which indicates that the proposed
method presents a higher quality than the others.

The results obtained of the RMS contrast and MCI have to
be carefully analyzed since, although these present high values
and indicate a higher contrast, in medical images it can lead to
the loss of information in areas of interest and, specifically in
eye fundus images, if there are saturated areas it could indicate
a non-existent pathology.

Considering the specialized medical staff’s observations, it
can be concluded that fuzzy logic-based method highlights ar-

eas of interest without saturating the image, which is consistent
with PSNR values. Therefore, the objective of improving the
image to make it easier for the medical specialist to generate
a diagnosis has been fulfilled.

The working group is currently testing a method that
measures the quality of luminosity of the image, considering
that for dark images it will be necessary, as a previous
step, to improve the luminosity, and then apply the contrast
enhancement, in order to reduce the degradation of the edges.
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