FPGA Simulation for Computing Pseudoinverse Matrices

Gerardo Marcos Tornez Xavier Energy and Electronics Academic, UPIEM-IPN, Mexico City, Mexico gtornezx@ipn.mx Luis Martín Flores Nava Electrical Engineering Department, CINVESTAV-IPN, Mexico City, Mexico Imflores@cinvestav.mx

Abstract— Many scientific and engineering processing models of big data deal with classification tasks. In particular, current intelligent approaches work efficiently for them, as they use neural techniques with shallow architectures. The Extreme Learning Machine (ELM), which is a one-hidden layer feedforward neural network, is capable of achieving high accuracy in these tasks. Moreover, one of its weighting matrices is the pseudoinverse of the hidden data. In this sense, this work presents meaningful results of computing the Moore-Penrose pseudoinverse for the ELM, using a recurrent model. The numerical simulations were based on an FPGA framework used to design a pseudoinversecomputing core.

Keywords— Pseudoinverse, Extreme Learning Machine, FPGA Simulation.

I. INTRODUCTION

At present, efficient solutions for dealing with big data in classification tasks are given via the machine learning scheme. The Extreme Learning Machine, which is a one-hidden layer neural network, belongs to this scheme [1]. In the ELM model, the entries of the weighting matrix between the input layer and the hidden layer are random; meanwhile, the Moore-Penrose (M-P) pseudoinverse defines the entries of the matrix between the hidden and the output layers. Moreover, the solution of the pseudoinverse matrix is a research topic ongoing, whose formulation can be made either with linear algebra analysis [2] or with neural network models [3, 4]. Also, the hardware implementation topic draws the acceleration issue of M-P matrices computation as necessary for real-time systems [5-7]. In this context, we use a low-complexity recurrent neural model as a numerical model for computing the M-P matrix in hardware. This goal is achieved with the FPGA Xilinx simulation software.

This manuscript is divided as follows. Section II recalls the fundamental properties of the M-P pseudoinverse of full-rank matrices. Section III reviews the concepts for establishing first-order recurrent neural models that are suitable for computing the M-P pseudoinverse. In section IV, the Simulink platform simulates a recurrent neural model, showing acceptable accuracy results with floating point arithmetic. Section V introduces the results in Matlab along with the FPGA software system. The section VI, presents timing diagrams based on a standard FPGA development board for a specific case of the pseudoinverse computation and the section VII presents a Discussion. The article ends with the Conclusion section.

979-8-3503-0676-7/23/\$31.00 ©2023 IEEE

Felipe Gómez Castañeda Electrical Engineering Department, CINVESTAV-IPN, Mexico City, Mexico fgomez@cinvestav.mx José Antonio Moreno Cadenas Electrical Engineering Department, CINVESTAV-IPN, Mexico City, Mexico jmoreno@cinvestav.mx

II. MOORE-PENROSE PSEUDOINVERSE

This section introduces the Conditions and Formulations for the M-P pseudoinverse using the following definitions: the M-P pseudoinverse of A, which is full-rank is denoted as A^+ , with $A \in \mathbb{R}^{mxn}$, and $A^+ \in \mathbb{R}^{nxm}$; A^T is the transpose of A and (•)⁻¹ denotes the inverse.

Conditions:

The M-P pseudoinverse satisfies (1) through (4).

$$AA^+A = A \tag{1}$$

$$A^+AA^+ = A^+ \tag{2}$$

$$(AA^+)^T = AA^+ \tag{3}$$

$$(A^+A)^T = A^+A \tag{4}$$

Formulations:

The M-P pseudoinverse is computed with either (5) or (7).

$$A^{+} = (A^{T}A)^{-1}A^{T} \quad if \ m > n$$
 (5)

$$A^+ = (A)^{-1}$$
 if $m = n$ (6)

$$A^{+} = A^{T} (AA^{T})^{-1} \quad if \ m < n$$
 (7)

If only one equation in the set of Conditions is satisfied, the pseudoinverse is called the generalized inverse.

III. NEURAL MODELS FOR MOORE-PENROSE PSEUDOINVERSE

In early works, neural network models were proposed to compute the M-P pseudoinverse of matrices [8-9], where their numerical complexity can become rich. From this background, we observe the work by J. Wang [10], who presented an analog recurrent network with minimal complexity. Wang's network is dynamic, whose matrix-valued variable X(t) approaches the Moore-Penrose pseudoinverse of the matrix A when dX/dt is zero. This system is based on a scalar-valued function E=E(t), which reduces its magnitude as the course of time advances into infinity and, is defined as:

$$E = \|AX(t) - I\|_F^2$$
(8)

 $\|\bullet\|$ denotes the Frobenius norm and *I* is the identity matrix. Moreover, using the negative of the gradient of *E* along with the equation: $dX/dt = -(\eta/2) dt/dX$, leads to the set of ordinary differential equations, which is given in (9), where η is a constant.

$$\frac{dX(t)}{dt} = -\eta (A^T A X(t) - A^T)$$
(9)

This equation solves matrix X for matrix A, whose dimension satisfies m>n. This is the case for most of the practical matrices in the ELM model under consideration. Moreover, replacing A^T by $(A^T)_i$ and X by x_i , their respective columns, (9) solves for x_i .

IV. SIMULINK ANALYSIS

This section deals with simulations using Simulink, whose precision was set for floating-point.

The computing implementation of (9) is given in Figure 1, where the vector $(A^T)_j$ is the column of the matrix A^T with index j, with j=1, ..., n. This system contains a matrix-vector multiplier, one adder, and an integrator. The adder subtracts A^TAx_j from the vector $(A^T)_j$ and produces the time derivative of x_j namely, dx_j/dt . The Simulink representation of Figure 1 for a 9xn matrix is shown in Figure 2, where the integrator is built with a onesample delay or z^{-1} , and an input scaler with a $1x10^{-3}$ factor. This value establishes the differential in time. Figure 3 shows 9 blocks of Figure 2 to compute the vector $(A^T)_j$. Figure 4 shows the Simulink simulation of x_j with j=1, i.e. corresponding to the first column of matrix A, whose entries are included below.

	0.6294	-0.6848	0.3115	0.4121	-0.1225	-0.4479	0.5025	0.6814	-0.2967
	0.8116	0.9412	-0.9286	-0.9363	-0.2369	0.3594	-0.4898	-0.4914	0.6617
	-0.7460	0.9143	0.6983	-0.4462	0.5310	0.3102	0.0119	0.6286	0.1705
	0.8268	-0.0292	0.8680	-0.9077	0.5904	-0.6748	0.3982	-0.5130	0.0994
Λ -	0.2647	0.6006	0.3575	-0.8057	-0.6263	-0.7620	0.7818	0.8585	0.8344
A -	-0.8049	-0.7162	0.5155	0.6469	-0.0205	-0.0033	0.9186	-0.3000	-0.4283
	-0.4430	-0.1565	0.4863	0.3897	-0.1088	0.9195	0.0944	-0.6068	0.5144
	0.0938	0.8315	-0.2155	-0.3658	0.2926	-0.3192	-0.7228	-0.4978	0.5075
	0.9150	0.5844	0.3110	0.9004	0.4187	0.1705	-0.7014	0.2321	-0.2391
	0.9298	0.9190	-0.6576	-0.9311	0.5094	-0.5524	-0.4850	-0.0534	0.1356

Fig. 1. Computing representation of equation (9), using vector x_i .

Fig. 2. Simulink representation of Figure 1 for a 9xn matrix.

Fig. 3. Simulink using 9 blocks of Fig. 2 to create vector $(A^T)_{j}$.

Fig. 4. Simulink simulation x_j with j=1, the first column the A^T .

Introducing the following columns of A, the next columns of the inverse matrix A^+ can be computed. The numerical result for the whole A^+ is below.

A+ =	0.2562	0.2968	-0.1500	0.1980	0.0147	-0.0488	0.1173	-0.2974	0.2937	0.0971
	-0.7904	0.4896	0.1163	-0.0046	0.3822	0.7591	-0.6041	-0.1227	0.7070	-0.2176
	-0.7729	-0.0344	0.0048	0.7420	0.1937	-0.4597	-0.5502	-0.1545	0.4548	-1.2498
	0.4644	0.4644 -0.1970 -		-0.5161	0.1241	0.5989	0.5232	0.4525	0.3116	0.5636
	1.5405	-0.5253	0.5444	-0.4952	-0.5511	0.3442	1.4080	0.4560	-0.6076	1.9704
	0.1044	0.4593	0.3500	-0.0088	-0.2755	-0.1443	0.3644	-0.6849	0.0145	-0.0011
	0.5410	0.3608	0.1782	-0.2957	0.1775	1.1925	0.5321	-0.2824	-0.0510	1.0388
	0.6797	-0.2791	0.3735	-0.3649	-0.0130	-0.4826	0.2469	-0.1380	-0.2391	0.3604
	1.4364	-0.5440	0.0381	-0.5990	0.0907	-0.2082	1.7207	0.9087	-0.6666	1.2437

Finally, it is worth noting that further simulations for matrices whose dimensions are diverse were realized using Matlab code, where the numerical precision keeps in floatingpoint.

V. MATLAB AND FPGA SIMULATION

The Matlab code to solve the equation (9) is listed in Algorithm 1. The pseudoinverse matrix of 10 matrices, whose dimension is mxn, was computed with this Matlab code. They have random entries in [-1, 1]. Table I contains information from both the Matlab and the FPGA simulation. The last row includes the equivalent formulations to get the values presented, where *N* can be approached by $5.66n^{2.88} + 6.32x10^5$. Moreover, *T* is the clock period, whose value is $1.1x10^{-6}$ sec. Figure 5 shows the FPGA system, which has one read-only RAM for storing A^TA and two write/read RAMs for storing temporarily x_j and $(A^T)_j$. The pulse signals were for the main clock, reset, internal reset, and stop.

Algorithm 1 to solve the equation (9)

1: A = rand(10,9)*2-1; 2: [m,n] = size(A);3: $At = A^{1}$: 4: T = 400000; 5: xj = zeros(n,T);6: dxj = zeros(n,T);7: dt = 1e-3; 8: for col = 1:m for t = 1:T-1 9: 10: dxj(:,t) = -(A'*A*xj(:,t)) + At(:,col);11: xj(:,t+1) = xj(:,t) + dxj(:,t)*dt;12: end 13: xj(:,col) = xj(:,end); 14: end

This work considers using a Xilinx development board with an XC7A100T-CSG324 FPGA from the Artix-7 family, where the simulation software was Vivado. The processing blocks in Figure 1 namely, matrix-vector multiplier, integrator, and adder were simulated with this software. The strategy in [11] is applied to perform the matrix-vector multiplication, saving hardware resources.

TABLE I DATA FROM MATLAB AND FPGA SIMULATIONS

$\begin{array}{c} \text{Matrix } \mathbf{A} \\ m \times n \end{array}$	Clock cycles on FPGA	Number of iterations in Matlab to get dX _i /dt ≤1x10 ⁻¹² (<i>N</i>)	Elapsed time to compute pseudoinverse on the FPGA, in sec. (<i>T_E</i>)	Number of DSP's		
11 × 10	12	$0.50x10^{6}$	72.6	180		
21 × 20	22	$0.70x10^{6}$	355.74	360		
31 × 30	32	$0.75x10^{6}$	818.4	540		
41 × 40	42	$0.90x10^{6}$	1,704.78	720		
51 × 50	52	1.20x10 ⁶	3,500.64	900		
61 × 60	62	$1.50x10^{6}$	6,240.3	1080		
71×70	72	$1.75x10^{6}$	9,840.6	1260		
81 × 80	82	$2.20x10^{6}$	16,073.64	1440		
91 × 90	92	$3.20x10^{6}$	29,469.44	1620		
101 × 100	102	4.0x10 ⁶	45,328.8	1800		
	n + 2	$\widehat{N} = 5.66n^{2.88} + 6.32x10^5$	$T_E = m(n+2)(T)(N)$	(9n)(2)		

Fig. 5. Block diagram of the FPGA system.

VI. FPGA TIMING SIMULATION

Regarding the simulations of the FPGA, a sample of snapshots of timing is included in Figure 6. It belongs to the first column of matrix A^+ , the pseudoinverse of the above matrix A. The values of dx_i/dt are around 1×10^{-12} at 600×10^6 ns. This confirms the predicted values given in Table I. We also observed that this simulation reproduces the same values by Matlab simulation. This simulation verifies the efficacy of the proposed neural method, which is computed by the FPGA development system.

VII. DISCUSSION

The main goal of this work was focused on presenting an alternative numerical process for computing pseudoinverse matrices, which highly contrasts with current hardware accelerators [5, 7, 12]. The main difference comes from the usage of design frameworks that optimize FPGA resources using matrix transformations. Despite this fact, the numerical core in this work can be parallelized to improve its performance for moderate matrix dimensions.

Q 📕 @ Q 💥 ೫ 📲 🛛 ▶+ 🕼 ∞ − Γ 🖂

Name 0 1% clk 0 1% rint 0 1% stop 0 dxj/dt 0 > 1% dxj1[11:-52] 1 > 1% dxj2[11:-52] -5 > 1% dxj3[11:-52] -5	Value	>7,000	.000	ns		,999,998 1 1 1		0 ns	ர்ர்	599,999	, , , , , , , , , , , , , , , , ,			лл			 UT	ns	່ານ່າ	
I& clk 0 I& rint 0 I& stop 0 dxj/at 0 > III dxj/at 1 > III dxj/at 1 > III dxj/at 1 > III dxj/at 1))).38666855775682e-13 5.37747624207441e-12 9.11404285375284e-12		1.3	21109449855	л. 	ىتىت		ותיו	ىئىز	لىنىز	أرز	Ļ	١Ĺ	ப்	μú	ίÚ	ΰψ	μÚ	ίÚ	¢л,
18 rint 0 18 stop 0 dxj/dt 1 > 10 dxj/dt 1) .38666855775682e-13 5.37747624207441e-12 9.11404285375284e-12		1.3	9110944985				–		Pot		The second			<u> </u>	~~~				
isop 0 dXj/dt 1 > iso dXj1[11:-52] 1 > iso dXj2[11:-52] -5 > iso dXj3[11:-52] -5) .38666855775682e-13 5.37747624207441e-12 9.11404285375284e-12	Х	1.3	9110944985																
dXj/dt > ☞ dXj1[11:-52] 1: > ☞ dXj2[11:-52]5 > ☞ dXj2[11:-52]5	1.38666855775682e-13 5.37747624207441e-12 9.11404285375284e-12	·X	1.3	9110944985																
> 😻 dXj1[11:-52] 1. > 😻 dXj2[11:-52]5 > 😻 dXj3[11:-52]5	1.38666855775682e-13 5.37747624207441e-12 9.11404285375284e-12	·X	1.3	9110944985																
> 😻 dXj2[11:-52]5 > 😻 dXj3[11:-52]5	5.37747624207441e-12 9.11404285375284e-12				532e	-13	-χ-	1.388	8890038	0607e-13)	$\langle -$	1.38	566855	77568	2e-13	\rightarrow	1.388	389003	8
> 🕷 dXj3[11:-52] -9	9.11404285375284e-12			-5.377	7920	3312842	6e-12	I		1		Ē	-5.37	74762	2074	41e-12	=5	-5.37	703215	2
		·X	-9.1	1426489835	776	e-12	X	-9.11	4869429	6269e-1	2	Ē	-9.11	40428	3752	34e-12	5	-9.11	337671	9
> 😻 dXj4[11:-52] 5	5.30619992389347e-12	īχ	5.30	07088102313	317e	-12	- <u>x</u> -	5.306	6440131)332e-12	2		5.30	519992	38934	7e-12	=5	5.306	544013	1
> 😻 dXj5[11:-52] 1	.64927099755019e-13	-χ	1.6	4940422431	314e	-13	=	1.649	3320598	L654e-13	<u> </u>		1.64	927099	75501	9e-13	=	1.649	221037	5
> 😻 dXj6[11:-52] 4	.43645120640213e-13	Ξ <u>χ</u> Ξ	4.4	3478587186	519e	-13	<u> </u>	4.43	3409833	1 775e-13		Ē	4.43	545120	64021	3e-13	5	4.435	396094	8
> 😻 dXj7[11:-52] 6	.42808029027719e-12	-χ			6	. 429079	490999	36e-12				Ē	6.42	308029	02771	9e-12	=	6.428	191312	5
> 😻 dXj8[11:-52] 4	.32187619026081e-12	-χ			4	. 322431	.301773	12e-12					4.32	187619	02608	le-12	=	4.321	765167	9
> 😻 dXj9[11:-52] 1	.47221679291931e-13	-χ=	1.4	7230561076	128e	e-13	-χ-	1.47	2612018	403e-13			1.47	221679	29193	le-13	=	1.472	172383	9
Integrator																				
✓ ₩ Xj[0:9][11:-52] 0	0000000000000000,3fd0£	·· \ (00	00000	000000000,	3fd	064ccfb	Xoo	000000	0000000	,3fd064	ccfb	. <u>X</u> oo	000000	00000	00,3	fd064cc	fb	X0000	000000	0
> 😻 [0][11:-52] 0.	0.0								0.0	1		-1								—
> 😻 [1][11:-52] 0	0.256152387196915	·· x		0.256152383	7196	915		0.	25615238	37196915	;	X	0.	25615	23871	96915		X0.25	615238	37
> 😻 [2][11:-52] -0	0.790427892701573	χ		0.79042789	270.	1562		-0	7904278	9270156	7	X	-0	. 7904	7892	701573		X-0.7	904278	39
> 😻 [3][11:-52] -0	0.772890798447004	$\overline{\cdot \cdot \chi}$	-	0.77289079	844	6986	<u> </u>	-0	7728907	9844699	5	X	-0	. 7728	0798	447004		X-0.7	728907	9
> 😻 [4][11:-52] 0.	.464361522947252	Ξχ=		0.464361522	2947	242	=χ=	0.	46436152	2947247	,	- <u>x</u> -	0.	46436	15229	47252		X0.46	436152	2
> 😻 [5][11:-52] 1	1.54052819817411	χ		1.54052819	817	408	Ξχ=	1	. 540528	981741		X	1	. 5405	8198	17411		X1.54	052819	8
> 😻 [6][11:-52] 0	.104400358312661	Ξ <u>χ</u> Ξ		0.10440035	831	266	=	0.	1044003	8312661		X	0.	10440	03583	12661		X0.10	440035	\$8
> 😻 [7][11:-52] 0.	.540975130571256	Ξ.		0.540975130	0571	244	<u> </u>	0	5409751	3057125		X	0.	54097	51305	71256		X0.54	097513	30
> 😻 [8][11:-52] 0.	.679696583656933	ΞχΞ	- (0.679696583	3656	924	=	0.	67969658	3656928		- 	0.	67969	55836	56933		X0.67	969658	3
> 😻 [9][11:-52] 1.	.43638470070966	$= \sqrt{-1}$		1.43638470	070	963	ΞýΞ	1	4363847	0070964		Ξ¥=	1	. 4363	4700	70966	1	X1.43	638470	0

Fig. 6. Timing simulation snapshot.

In this sense, this work can not be compared fairly with other approaches even with other neural models, where their complexity is not suitable for hardware realization. The reason for them is purely academic and oriented to demonstrate stability and convergence issues due to their dynamic nature, using standard numerical systems [4, 13].

VIII. CONCLUSION

This work presented the main topics related to the computation of pseudoinverse matrices via an FPGA, which is based on a recurrent neural network. The numerical complexity of this neural model is low, leading to its execution in real-time with moderate latency for small matrix dimensions. However, for larger dimensions, it results in significant latency, which necessitates the use of an array of various FPGAs working in parallel to reduce this delay. In general, this approach is competitive compared to other works and is well-suited for the ELM model.

REFERENCES

- Guang-Bin Huang,Qin-YuZhu and Chee-Kheong Siew, "Extreme learning machine: Theory and applications", Neurocomputing, pp. 489-501, 2006.
- [2] J. C. A. Barata and M. S. Hussein "The Moore-Penrose Pseudoinverse. A Tutorial Review of the Theory", Brazilian Journal of Physics, pp. 146-165, 2012.
- [3] Lin Li and Jianhao, "An efficient second-order neural network model for computing the Moore-Penrose inverse of matrices", IET Signal Processing, pp. 1-12, 2022.

- [4] Wenqi Wu and Bing Zheng, "Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix", Neurocomputing 418, pp. 221-231, 2020.
- [5] A. Irturk, B. Benson, S. Mirzaei and R. Kastner, "An FPGA design space exploration tool for matrix inverion architectures", 2018 IEEE Symposium on Application Specific Processors. IEEE, June 2008.
- [6] C. Y. Tan, C. Y. Ooi, H. S. Choo and N. Ismail, "Efficient hardwareaccelerated pseudoinverse computation through algorithm restructuring for parallelization in high level synthesis", Int. J. Circuit Theory Appli., vol. 50, pp. 394-416, February 2022.
- [7] J. V. France-Villora, A. Rosado-Muñoz, J. M. Martínez-Villena, M. Bataller-Mompean, J. F. Guerrero and M. Wegrzyn, "Hardware implementation of rea-time extreme learning machine in FPGA: Analysis of precision, resource occupation and performance", Comput. Electr. Eng., vol. 51, pp. 139-156, April 2016.
- [8] G. Wu, J. Wang and J. Hootman, "A recurrent neural network for computing pseudoinverse matrices," Math. Comput. Modell., vol. 20, pp. 13-21, July 1994.
- [9] Y. Zhang "Revisit the analog computer and gradient-based neural system for matrix inversion," Proceeding of the 2005 IEEE International Symposium on Mediterrean Conference on Control and Automation Intelligent Control. June 2005.
- [10] J. Wang "A recurrent neural network for real-time matrix inversion," Appl. Math. Comput., vol. 55, pp. 89-100, April 1993.
- [11] I. Sayahi, M. Machhout and R. Tourki, "FPGA implementation of matrix-vector multiplication using xilinx system generator", 2018 International Conference on Advanced Systems and Electric Technnologies (IC_ASET). March 2018.
- [12] R. Wang, C. S. Thakur, G. Cohen, T.J. Hamilton, J. Tapson and A. Schaik "Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition", IEEE Trans. Biomed. Circuits Syst., vol 11, pp. 574-584, June 2017.
- [13] Zhang N. and Zhang T. "Recurrent Neural Network for Computing the Moore-Penrose Inverse with Momentum Learning" Chinese Journal of Electronics Vol. 28 No.6, Nov. 2020.

ø