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Abstract— Many scientific and engineering processing models 

of big data deal with classification tasks. In particular, current 

intelligent approaches work efficiently for them, as they use neural 

techniques with shallow architectures. The Extreme Learning 

Machine (ELM), which is a one-hidden layer feedforward neural 

network, is capable of achieving high accuracy in these tasks. 

Moreover, one of its weighting matrices is the pseudoinverse of the 

hidden data. In this sense, this work presents meaningful results 

of computing the Moore-Penrose pseudoinverse for the ELM, 

using a recurrent model. The numerical simulations were based 

on an FPGA framework used to design a pseudoinverse-

computing core. 

 

Keywords— Pseudoinverse, Extreme Learning Machine, 

FPGA Simulation. 

I. INTRODUCTION 

At present, efficient solutions for dealing with big data in 
classification tasks are given via the machine learning scheme. 
The Extreme Learning Machine, which is a one-hidden layer 
neural network, belongs to this scheme [1]. In the ELM model, 
the entries of the weighting matrix between the input layer and 
the hidden layer are random; meanwhile, the Moore-Penrose 
(M-P) pseudoinverse defines the entries of the matrix between 
the hidden and the output layers. Moreover, the solution of the 
pseudoinverse matrix is a research topic ongoing, whose 
formulation can be made either with linear algebra analysis [2] 
or with neural network models [3, 4]. Also, the hardware 
implementation topic draws the acceleration issue of M-P 
matrices computation as necessary for real-time systems [5-7]. 
In this context, we use a low-complexity recurrent neural model 
as a numerical model for computing the M-P matrix in hardware. 
This goal is achieved with the FPGA Xilinx simulation software. 

This manuscript is divided as follows. Section II recalls the 
fundamental properties of the M-P pseudoinverse of full-rank 
matrices. Section III reviews the concepts for establishing first-
order recurrent neural models that are suitable for computing the 
M-P pseudoinverse. In section IV, the Simulink platform 
simulates a recurrent neural model, showing acceptable 
accuracy results with floating point arithmetic. Section V 
introduces the results in Matlab along with the FPGA software 
system. The section VI, presents timing diagrams based on a 
standard FPGA development board for a specific case of the 
pseudoinverse computation and the section VII presents a 
Discussion. The article ends with the Conclusion section. 

II. MOORE-PENROSE PSEUDOINVERSE 

This section introduces the Conditions and Formulations for 
the M-P pseudoinverse using the following definitions: the M-P 
pseudoinverse of � , which is full-rank is denoted as A+, 
with � ∈ ℝ���, and �� ∈ ℝ���;  AT is the transpose of A and 
(•)-1 denotes the inverse. 

Conditions: 

The M-P pseudoinverse satisfies (1) through (4). 

���� = �    (1) 

����� = ��    (2) 

(���)� = ���   (3) 

(���)� = ���   (4) 

 

Formulations: 

The M-P pseudoinverse is computed with either (5) or (7). 

�� = (���)
���        �� � > �  (5) 

�� =  (�)
�                 �� � = �  (6) 

�� =  ��(���)
�       �� � < �  (7) 

 

If only one equation in the set of Conditions is satisfied, the 
pseudoinverse is called the generalized inverse. 

 

III. NEURAL MODELS FOR MOORE-PENROSE PSEUDOINVERSE 

     In early works, neural network models were proposed to 
compute the M-P pseudoinverse of matrices [8-9], where their 
numerical complexity can become rich. From this background, 
we observe the work by J. Wang [10], who presented an analog 
recurrent network with minimal complexity. Wang’s network 
is dynamic, whose matrix-valued variable X(t) approaches the 
Moore-Penrose pseudoinverse of the matrix A when dX/dt is 
zero. This system is based on a scalar-valued function 
E=E(t),which reduces its magnitude as the course of time 

advances into infinity and, is defined as: 
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� = ‖��(�) � �‖�
�               (8)   

 
||•|| denotes the Frobenius norm and I is the identity matrix. 
Moreover, using the negative of the gradient of E along with 
the equation: dX/dt = -(η/2) dt/dX, leads to the set of ordinary 

differential equations, which is given in (9), where �  is a 
constant. 
 

��( )

� 
=  ��(����(�) � ��)  (9) 

 
This equation solves matrix X for matrix A, whose dimension 
satisfies m>n. This is the case for most of the practical matrices 
in the ELM model under consideration. Moreover, replacing AT 
by (AT)j and X by xj, their respective columns, (9) solves for xj. 

 

IV. SIMULINK ANALYSIS 

This section deals with simulations using Simulink, whose 
precision was set for floating-point. 

The computing implementation of (9) is given in Figure 1, where 
the vector (AT)j is the column of the matrix AT with index j, with 
j=1, …, n. This system contains a matrix-vector multiplier, one 
adder, and an integrator. The adder subtracts ATAxj from the 
vector (AT)j and produces the time derivative of xj namely, dxj/dt. 
The Simulink representation of Figure 1 for a 9xn matrix is 
shown in Figure 2, where the integrator is built with a one-
sample delay or z-1, and an input scaler with a 1x10-3 factor. This 
value establishes the differential in time. Figure 3 shows 9 
blocks of Figure 2 to compute the vector (AT)j. Figure 4 shows 
the Simulink simulation of xj with j=1, i.e. corresponding to the   
first column of matrix A, whose entries are included below. 

 

 

Fig. 1. Computing representation of  equation (9), using vector xj. 

  

Fig. 2. Simulink representation of Figure 1 for a 9xn matrix. 

 

Fig. 3. Simulink using 9 blocks of Fig. 2 to create vector (AT)j. 

 

Fig. 4.   Simulink simulation xj with j=1, the first column the AT. 
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     Introducing the following columns of A, the next columns 
of the inverse matrix A+ can be computed. The numerical 
result for the whole A+ is below.  
     

 
 
     Finally, it is worth noting that further simulations for 
matrices whose dimensions are diverse were realized using 
Matlab code, where the numerical precision keeps in floating-
point. 

V. MATLAB AND FPGA SIMULATION 

 The Matlab code to solve the equation (9) is listed in 
Algorithm 1. The pseudoinverse matrix of 10 matrices, whose 
dimension is mxn, was computed with this Matlab code. They 
have random entries in [-1, 1]. Table I contains information 
from both the Matlab and the FPGA simulation. The last row 
includes the equivalent formulations to get the values 
presented, where N can be approached by 5.66n2.88 + 6.32x105. 
Moreover, T is the clock period, whose value is 1.1x10-6 sec. 
Figure 5 shows the FPGA system, which has one read-only 
RAM for storing ATA and two write/read RAMs for storing 
temporarily xj and (AT)j. The pulse signals were for the main 

clock, reset, internal reset, and stop. 

 
Algorithm 1 to solve the equation (9) 

 

 

 

 

 

 

 

 

 

 

This work considers using a Xilinx development board with 
an XC7A100T-CSG324 FPGA from the Artix-7 family, 
where the simulation software was Vivado. The processing 
blocks in Figure 1 namely, matrix-vector multiplier, 
integrator, and adder were simulated with this software. The 
strategy in [11] is applied to perform the matrix-vector 
multiplication, saving hardware resources. 

TABLE I DATA FROM MATLAB AND FPGA SIMULATIONS 

 
Matrix A 

! × # 

Clock 
cycles 

on 
FPGA 

 

Number of iterations 
in Matlab to get  
dXj/dt ≤1x10-12 

(N) 
 

Elapsed time to 
compute 

pseudoinverse on 
the FPGA, in sec. 

(TE) 

Number 
of 

DSP’s 

$$ × $% 12 0.50+10,
 72.6 180 

0$ × 0% 22 0.70+10,
 355.74 360 

3$ × 3% 32 0.75+10,
 818.4 540 

4$ × 4% 42 0.90+10,
 1,704.78 720 

7$ × 7% 52 1.20+10,
 3,500.64 900 

8$ × 8% 62 1.50+10,
 6,240.3 1080 

9$ × 9% 72 1.75+10,
 9,840.6 1260 

:$ × :% 82 2.20+10,
 16,073.64 1440 

;$ × ;% 92 3.20+10,
 29,469.44 1620 

$%$ × $%% 102 4.0+10,
 45,328.8 1800 

 

 

 

� + 2 

 

 

N> = 5.66��.?? + 6.32+10@  

 

AB = �(� + 2)(A)(C) 

 

(9�)(2) 

 

Fig. 5.   Block diagram of the FPGA system. 

 

VI. FPGA TIMING SIMULATION 

      Regarding the simulations of the FPGA, a sample of 
snapshots of timing is included in Figure 6. It belongs to the 
first column of matrix A+, the pseudoinverse of the above 
matrix A. The values of dxj/dt are around 1x10-12 at 600x106 
ns. This confirms the predicted values given in Table I. We 
also observed that this simulation reproduces the same values 
by Matlab simulation. This simulation verifies the efficacy of 
the proposed neural method, which is computed by the FPGA 
development system. 
 

VII. DISCUSSION 

     The main goal of this work was focused on presenting an 
alternative numerical process for computing pseudoinverse 
matrices, which highly contrasts with current hardware 
accelerators [5, 7, 12]. The main difference comes from the 
usage of design frameworks that optimize FPGA resources 
using matrix transformations. Despite this fact, the numerical 
core in this work can be parallelized to improve its 
performance for moderate matrix dimensions. 

1: A = rand(10,9)*2-1; 

2: [m,n] = size(A); 

3: At = A’|; 

4: T = 400000; 

5: xj = zeros(n,T); 

6: dxj = zeros(n,T); 

7: dt = 1e-3; 

8: for col = 1:m 

9:      for t = 1:T-1 

10:           dxj(:,t) = -(A’*A*xj(:,t)) + At(:,col); 

11:           xj(:,t+1) = xj(:,t) + dxj(:,t)*dt; 

12:    end 

13: xj(:,col) = xj(:,end); 

14: end 
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Fig. 6.   Timing simulation snapshot. 

 

       In this sense, this work can not be compared fairly with 
other approaches even with other neural models, where their 
complexity is not suitable for hardware realization. The 
reason for them is purely academic and oriented to 
demonstrate stability and convergence issues due to their 
dynamic nature, using standard numerical systems [4, 13]. 

 

VIII. CONCLUSION 

       This work presented the main topics related to the 
computation of pseudoinverse matrices via an FPGA, which 
is based on a recurrent neural network. The numerical 
complexity of this neural model is low, leading to its 
execution in real-time with moderate latency for small matrix 
dimensions. However, for larger dimensions, it results in 
significant latency, which necessitates the use of an array of 
various FPGAs working in parallel to reduce this delay. In 
general, this approach is competitive compared to other 
works and is well-suited for the ELM model. 
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