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Abstract
In this work, a study case is presented in which the design of the layout for a CMOS sensor cell is partially automated by

implementing a metaheuristic algorithm to find the best tradeoff between two conflicting objectives (two quantitative

opposite and not totally independent yet desired performance or design qualities) among the set of feasible layout and

electronic device configurations within a constricted search space. The feasibility of a solution (a particular configuration)

and its capability to fulfill every requested objective, is determined by its compliance to the CMOS-MEMS design rules and

fabrication process. Any given solution besides showing optimal or very near-to-the-optimal characteristics, must be suit-

able to be fabricated in the CMOS conventional process which for this case is a 0:5 lm, 3-metal 2-poly N-well fabrication,

beside this, since monolithic inertial sensors generally contains embedded movable electromechanical parts a surface

micromachining must be considered. Simulation data and behavior of the bio-inspired metaheuristic algorithm used during

the design process are presented, as well as electromechanical simulation results based the automatic-generated solutions.

Keywords MEMS � CMOS-MEMS � Genetic algorithm � Floating-gate � FGMOS � Optimization

1 Introduction

Inertial sensors such as accelerometers are nowadays pre-

sent in many and varied industries and research areas

ranging from IoT to vehicle safety and aerospace devel-

opments, but also in consumer electronics as they can be

found in most communication and entertainment devices.

This kind of instruments can be catalogued as MEMS due

to their dimensions and close relation with the integrated

circuit fabrication process. At a microfabrication level,

MEMS are generally conformed by two subsystems: one or

more microelectromechanical structures with mechanical,

thermal, optical, and related properties and the associated

electronic circuit for signal conditioning and processing.
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These two stages in the measurement system are not

always intended to be integrated in a single chip since the IC

fabrication process might not be fully compatible with the

electromechanical counterpart. In accelerometers for

example, the mobile proof mass (which serves as a varactor

proportional to its displacement) is usually thicker than those

metal layers interconnecting the IC in-chip electronic devi-

ces. As seen in Fig. 1, a typical MEMS sensor consist of two

separated chips which leads to higher costs and additional

prototyping issues such as wire bonding. An alternative to

the solution described above is a single-chip (monolithic)

CMOS-MEMS system which integrates both electronic and

electromechanical capabilities in a single silicon die.

Nevertheless, a mechanism to effectively transduce one

physical quantity into another of electrical nature within

the integrated chip must be considered. As reported in

Abarca-Jimnez (2018) and Abarca-Jimenez (2013) the

floating-gate MOS transistor (FGMOS) is suitable to be the

transducer element in accelerometer designs.

The capacitive coupling attribute of the FGMOS tran-

sistor will be further discussed as its high dependency to

the particular topology and layout geometry established by

the design engineer is what would make it interesting to be

computationally optimized by means of metaheuristic

methods and algorithms.

The present study case represents first approach from

our group to the Evolutionary Multi-Objective Optimiza-

tion (EMOO) in the field of CMOS layout design. State-of-

the-art bio-inspired algorithms usually deal with way more

sophisticated design and computational problems and are

continuously improved and compared one to another. The

selected parameters and characteristics in the applied

algorithm may not go beyond a proof-of-concept context

and are not intended to optimize the performance of the

algorithm itself but to find a preliminary design solution.

The so called genetic algorithms are a versatile group of

bio-inspired metaheuristic techniques based on the natural

evolutionary process that along with other Evolutionary

Multi Objective Optimization (EMOO) methods are com-

monly used in engineering for optimization (Coello-Coello

2015) and also popular in the field of logistic operations

and scheduling (Murata et al. 1996). This kind of iterative

search methods are well known to effectively handle very

large modeling parameter quantities in problems with up to

more than a few thousand of variables (Yang et al. 2008)

and a couple dozens of objective functions (Lopez-Jaimes

and Coello-Coello 2015). This makes the multi-objective

evolutionary optimization a fertile research area nowadays.

Another research topic in vogue within this framework is

the appropriate constraint handling for a given modeled

problem, this due to the multiple natural and technical

restrictions that the real-world design problems usually

involve, aside from many other mathematical models with

not necessarily physical counterparts, carefully designed to

benchmark different algorithms and methods.

When it comes to mechanical, microelectronic or other

geometry-based engineering design problems, especially for

those where the shape and form factor of the designed ele-

ment can be deconstructed into smaller parts, each one with

its particular parameters set, the main use of genetic algo-

rithms is the codification and random-like selection of the

parameters that otherwise can be manually adjusted by the

designer. The whole algorithm is a sophisticated computa-

tional attempt to emulate the also complex biological process

by which a population of individuals combine their genetic

information in order to achieve a better overall performance

before a given situation, with every generation as a new

group of individuals replacing the one that preceded it.

In terms of a genetic algorithm, when applied to an

engineering design problem, each variable is codified with

a certain number of bits, usually a binary string long

enough according to the physical nature of the variable and

its useful range in the real numbers within the boundaries

of the search space. We call chromosome (Fig. 2) to an

array of n variables conveniently defined in length and

position that are concatenated in a single binary string, this

array contains all the variables involved in the models for

one or more objective functions. A chromosome also rep-

resents an individual among the population, since any of its

particular characteristics can be extracted from the bits

sequence and used to evaluate the objective function

associated to a design requirement.

For a single-objective problem, when evaluated with a

particular combination of either continuous or discretized

values for each variable, the n-variable objective function

(1) describes the fitness of the selected individual, that is,

how well it fulfills the goal of the modeled problem

quantitatively. During the evolutionary process, individuals

are randomly selected and tried out to determine their fit-

ness, also, mechanisms to determine the best element

Fig. 1 Typical MEMS sensor consisting in two separated chips

Fig. 2 A chromosome including all codified variables in a single

string
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within a population for a given generation (elitism), to

arbitrarily deviate the tendency avoiding local minima and

maxima (mutation) and to combine features of two or more

individuals interpolating their chromosomes (crossover)

are implemented to iteratively achieve a global optima.

fitness ¼ f ðx1; x2; :::; xnÞ ð1Þ

In the case of a multi-objective design task, it is only

useful to implement this kind of method when every pur-

sued objective is conflicting with one or more other

objectives, so increasing the fitness for a particular goal

goes in detriment of the complementary objectives. This is

why a Pareto-like analysis must be added to the process in

order to find the best or most profitable trade-off between

objectives. Usually, the nearest point to the ideal solution

in the Pareto Frontier (Fig. 3) is selected to be a final

solution, since for a problem with objectives in conflict the

optimal for every goal cannot be reached at the same time

(Coello-Coello 2001). The Pareto Frontier, is constructed

from the set of non-dominated solutions for a given search

space. A non-dominated solution is that for which there is

no other solution better in all the attributes at once. This

solution dominate some others by being better in at least

one objective and equal or better in all the others.

2 The FGMOS transistor in terms of its
geometry

Floating-gate transistors, as well as every other device

within the complementary MOS technology, are designed

by configuring layers of different materials in a given

topological structure. The floating-gate transistor, also

known as FGMOS, has been primarily used in the fabri-

cation of digital storage devices (Baker 2005, pp. 113,

466). The information is allocated in the transistor in the

form of electric charge that is transferred to and from

(programming and erasing) the so called floating gate ter-

minal, the FGMOS main feature is that of including a

double polysilicon gate stacked structure (Fig. 4) in which

one of them, the closest to the transistor channel, is elec-

trically isolated from other terminals and circuit paths,

nevertheless this floating terminal might be electrostati-

cally induced to a potential that will ultimately drive the

current across the transistor channel.

When it comes to a conventional n-channel MOS tran-

sistor in saturation ðVDS �VGS � VTH ;VGS �VTH ;VS ¼
VB ¼ 0Þ (Baker 2005, p. 144), the drain current ID driven

through the channel (between drain and source terminals),

is given by Eq. (2). Where the device-specific parameter b
is given by b ¼ KPn �W=L, KPn is the n-channel

transconductance parameter given by the product of the

semiconductor electron mobility ln and the gate oxide

capacitance Cox, W and L are the width and length of the

polysilicon gate terminal and therefore of the transistor’s

channel from a top view. At this point, the channel mod-

ulation effects are neglected in this approach in order to

simplify the algorithm implementation. Nevertheless, fur-

ther discussion will show that the channel modulation

parameter allows to fully match the obtained results from

the algorithm with SPICE device simulations.

ID ¼ b
2
ðVGS � VTHÞ2 ¼

KPn

2
�W
L
ðVGS � VTHÞ2

ID ¼ lnCox

2
�W
L
ðVGS � VTHÞ2

ð2Þ

In CMOS-based transistor designs, parameters W and

L will take particular relevance since layout geometry is

the only field left to the engineer to freely intervene. This

applies for most fabrication processes where there are well

defined design rules and restrictions including quantity and

type of available materials, sheet resistivity and thicknesses

for each layer.

In the case of floating-gate transistors, we must consider

that the effective applied voltage in the (floating) gate, now

on called floating potential VFG is the one driving the drain

electrical current ID and is at the time induced by the

potential supplied to the control gate VCG as in Eqs. (3) and

Fig. 3 Location of Pareto-optimal Frontiers and ideal (utopian)

optimal point, for a single all-connected feasible region of the search

space Fig. 4 Typical floating-gate transistor terminals and structure
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(4) taking into account the capacitive coupling factor kc
deduced from the capacitive voltage divider shown in

Fig. 5 and widely discussed in Abarca-Jimnez (2018) and

Granados-Rojas (2017).

VFG ¼ kc � VCG ð3Þ

kc ¼
Cpp

Cpp þ Cox
ð4Þ

Cox and Cpp are respectively the capacitances between

substrate and floating gate and between floating and control

gates. In this study case, parasitic capacitors such as gate-

to-drain and gate-to-source capacitances are neglected.

Regarding further FGMOS analysis, Eq. (2) can be modi-

fied as follows:

ID ¼ b
2
ðVGS � VTHÞ2 ¼

lnCox

2
�W
L
ðkcVCG � VTHÞ2 ð5Þ

At this point, the geometry-dependent parameters are all

capacitive and related to the W/L ratio. A layout top view

(Fig. 6) reveals some other details to be considered. As can

be seen, due to the design rules and photolithography

compliance requirements would not be appropriate to

locate the poly-to-poly capacitor right above the gate oxide

and gate terminal, instead, the top polysilicon (darker red)

terminal lies over in an area right aside (above in the fig-

ure) to the transistor active regions, this rectangular pattern

in the Poly 2 layer constitutes the control gate and is

directly connected to the exterior with via contacts.

Floating gate terminal (lighter red) has a geometry pattern

consisting in two rectangles, a narrow one ðW � LÞ
actually forming the n-channel between the drain and

source active areas, and other way wider polysilicon plate

featuring a convenient area to form a poly-to-poly capac-

itor. Many connection and terminals seems to connect this

plate with non-floating terminals but as is described later

the floating gate is completely isolated (surrounded only by

dielectric silicon dioxide and air gaps).

Recalling Fig. 6, another thing to point out is that, as for

the C5 fabrication process (ON Semiconductor C5X, 0.5

Micron Technology Design Rules 4500099 Rev. X, 2020,

p. 99), the gate silicon dioxide tox with about to 13.5nm is

quite thin in comparison to the field oxide tfox (400nm)

underneath the floating gate main plate. So, for the

capacitive floating factor kc a two-parallel-capacitor system

must be considered in further detailed analysis. As shown

in Fig. 7, during the multi-stage photolithography process,

the lower polysilicon layer (Poly 1) is grown over two

oxide regions with different thicknesses, not involving any

significant mechanical issue. Control gate (Poly 2) due to

design rules must be drawn with specific margins within

Poly 1 surface in order to generate a poly-to-poly capacitor.

The dielectric thickness between Poly 1 and Poly 2 layer is

tpp ¼ 39nm, as for the mentioned fabrication process.

As described in Granados-Rojas (2017), Abarca-Jimnez

(2018), and Abarca-Jimenez (2013) floating gate transistor

may be used as transductive active elements when it comes

to inertial micro-sensors such as capacitive accelerometers,

moreover, in Granados-Rojas (2016) alternative interdigital

structures are proposed in order to achieve higher sensi-

tivities based on the geometry of the movable parts within

the CMOS–MEMS chip or device.

Figure 8 depicts how floating gate gets connected to a

CMOS-MEMS variable capacitor while remaining electri-

cally isolated. The movable capacitive structure, also

known as varactor consist in two metallic terminals facing

each other along the substrate plane, one of them is fixed

while the other is coupled mechanically by a spring system

and released by means of MEMS surface micromachining

procedures to freely move while in presence of accelerated

Fig. 5 Floating gate’s equivalent capacitive divider

Fig. 6 CAD layout for a floating-gate transistor

Fig. 7 Poly-to-poly and poly-to-substrate capacitor (interleaved

insulating oxide layers not represented)
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movements. Figure 8 must be considered as a simplifica-

tion of the actual varactor designed, showing just a few

fingers at each end of the varactor and considering only

Metal 1.

Figure 9 summarizes the components of a conventional

MEMS FGMOS-based sensor subsystem within a CMOS

chip. Shall we highlight the inclusion of a usually value–

fixed voltage VY supplied to the movable terminal of the

varactor. At this point the control gate in the poly–to–poly

capacitor seen before and the movable capacitive structure,

having each their respective applied potentials, works

together in the same floating gate reformulating Eq.s (3)

and (4) with a weighted additive effect seen in Eqs. (6) and

(7), where CY as in Eq. (8) is the capacitance in the MEMS

varactor from a comprehensive, yet idealistic equation

model presented in Granados-Rojas (2016) and Granados-

Rojas (2017) that neglects gravitational side effects. Fig-

ure 10 shows a micrograph of an actual MEMS capacitive

interdigital structure which capacitance in case of a dis-

placement Dy along the y axis can be modeled by Eq. (8).

VFG ¼ kcYðVY þ VCGÞ ð6Þ

VFG ¼ CYVY þ CppVCG

CY þ Vpp þ Cox þ Vfox
ð7Þ

VFG ¼ 2 � n � �0 �Wf � ðLf � DyÞ
dox

þ ðn� 1Þ � �0 � ðtM1 þ tM2 þ tM3Þ � ðLf � DyÞ
dfin

þ n � �0 �Wf � ðtM1 þ tM2 þ tM3Þ
dtip þ Dy

ð8Þ

Figure 10 was obtained by SEM microscopy on a pre-

viously micro-machined conventional CMOS chip, the

three-layered capacitive structure is the same described in

Granados-Rojas (2016), this variable capacitor is intended

to achieve about 5� 1fF while in presence of �1G of

acceleration.

According to the kind of capacitive structures presented

before and Eq. (8), the geometry-related variables are n, the

number of interleaved fingers, Wf and Lf , the width and

length of every finger, respectively, Dy is the displacement

due to acceleration in the direction of the y axis as stated in

Fig. 9, dox is the separation gap between metal layers,

about 1:1lm of silicon dioxide separating Metal 1 from

Metal 2 as well as Metal 2 from Metal 3 , this encapsu-

lating dielectric is chemically removed by wet etching, dfin
is the gap between contiguous fingers along the x axis and

dtip is the gap between a fingertip and the plate facing it in

the y direction. Beside the variables, the model also con-

sider �0 for the electrical permittivity constant in air

(similar to vacuum) and tM1, tM2 and tM3, that are constant

parameters as well, for the thickness of all the three metal

layers available in the C5 fabrication process from On

Semi, 0.64, 0.57 and 0:77lm, respectively.
From knowing the parallel-plate capacitor Eq. (9) we

transform it into a geometry-based Eq. (10). Where the i-th

area Ai of a capacitor Ci to be modeled is given by their

dimensions Wi and Li in the substrate plane and the

Fig. 8 Schematic for a simplified FGMOS-based CMOS-MEMS

inertial sensor

Fig. 9 Components of an FGMOS-based inertial sensor

Fig. 10 SEM micrograph of a CMOS-MEMS capacitive structure
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thickness of dielectric oxide between conductor or semi-

conductor layers. Equation (10) represents the floating

potential actuating on the transistor channel conduction in

terms of the topological design parameters, being Lpp and

Wpp the dimensions of the poly-to-poly capacitor with

dielectric thickness tpp.

Ci ¼
�0Ai

di
¼ �0WiLi

ti
ð9Þ

Ci ¼
CYVY þ �0WppLpp

tpp
VCG

CY þ �0
WppLpp
tpp

þ WfoxLfox
tfox

þ WoxLox
tox

h i ð10Þ

This data set instead of proposed by the layout designer

might be optimized by means of implementing a heuristic

algorithm.

3 The two conflicting optimization
objectives

As seen in Granados-Rojas (2018) high sensitivity is a

desired characteristic of an inertial sensor. For an

accelerometer, this parameter can be defined in terms of

how much the output signal changes according to the

ongoing acceleration magnitude. A given acceleration

produces a displacement in the sensor proof-mass which is

usually suspended by two or more metallic springs, let’s

consider the structure shown in Fig. 11 as the one pro-

viding mechanical movement. Since the optimization of

the dimensions and properties of each spring is out of the

scope of this two-objective analysis our design area com-

prises only the interdigital capacitive structure (varactor)

and the dimensions of the elements conforming the float-

ing-gate transistor.

Considering that any capacitive magnitude is propor-

tional to the area of the conductive (or semiconductive)

surfaces involved, and also being the drain current ID
proportional to the floating potential VFG and therefore

proportional to the capacitances in both the MEMS struc-

ture and the active device itself, we are in conditions to

state that the increment of the sensitivity Sacc is in conflict

with the reduction of the design area AD.

In other words, at a given proof-mass displacement (due

to an acceleration), the larger the capacitive structure is, the

bigger the changes in the capacitance, the floating voltage,

and the drain current what corresponds to an increment in

the sensitivity (desired to be greater) defined as seen in (11)

and (12). But, in the other hand, if a capacitive structure is

big so it is the design area (desired to be smaller).

To have both a very sensitive device fabricated in a very

small area is quite idealistic. This work is an approach to

find topological and geometrical parameters systematically

selected to be in agreement with a fair good tradeoff

between both objectives.

Sacc ¼
oID
oCY

ð11Þ

Sacc ¼ KPn �
W

L
� VMSCMS þ VCGCCG

CMS þ CCG þ Cox þ Cfox
� VTH

� �

� VMSCCG þ VMSCox � VCGCCG

CMS þ CCG þ Cox þ Cfox

� �2
 !

ð12Þ

Once the floating voltage VFG in (10) is reformulated for

the structure in Fig. 9 and included in expression (5), the

sensitivity to an acceleration Sacc in (12) must be inter-

preted as the change in drain current due to a change in the

capacitance of the MEMS structure, being CY the only

capacitive variable term. This sensitivity is measured in

lA=fF. On the other hand, expression (13) is the design

area (needed to be reduced) that is the accumulative of the

different regions of interest including the transistor chan-

nel, the polysilicon plate of the floating gate, and the

multiple surfaces of the varactor structure the air gaps

between them. The area occupied by interconnecting lines,

vias, pads and other active regions is discarded at this stage

in order to simplify the models and focus in the role of the

FGMOS as element of transduction.

AD ¼ WLþWFGLFG þ n WFLF þ 2dtipWF

� �

þ ðn� 1Þ dfin LF þ 2dtip
� �� � ð13Þ

In agreement with Fig. 12, the design area AD depends on

the widthWFG and length LFG of the floating-gate plate, but

also in the dimensions of the capacitive structure men-

tioned before, as can be seen, the dimensions WCG and LCG
of the control gate do not affect the resulting area since

they are inscribed into the floating-gate area. For theFig. 11 Mass-spring system with four springs and one capacitive

MEMS structure at the bottom
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transistor itself we are right now taking into account only

the channel and not the whole active area (drain and

source) since we are considering this area is highly

dependent in the rules for the specific fabrication process

(layer overlaps, number of active contacts, etc.) and they

do not have a significant effect in the electrical sensitivity

model as the channel area certainly does.

4 Codification of variables

The study case presented is characterized as a 2-objective,

11-variable optimization problem, each variable represents

a geometrical parameter either of the FGMOS or the

MEMS variable capacitor and each one of these codified in

a convenient way so the genetic operator of the meta-

heuristic algorithm can be applied. The selected codifica-

tion is to represent each variable with the binary Gray code

string, it is important to consider Gray codification due to

its inherent minimum Hamming distance (Bykov and

Aleksei L’vovich Perezhogin 2017) between consecutive

elements of the discrete variable. Moreover, the discrete

nature of the layout design and fabrication process for

CMOS technology allows to describe any magnitude as an

integer multiple of the layout unit k (0:3lm in the C5

fabrication process). For example, for Metal 1 layer the

minimum feature is a wire 3k ¼ 0:9lm long, this can be

considered the offset and assigned to the Gray zero for the

variable, now, let’s say we are not interested in wires or

plates larger than 9lm, this is 8:1lm ¼ 27k away from the

offset and a 5-bit string is needed to codify the variable

where 00000Gray is equal to 0:9lmð3kÞ, 00001Gray is 1:2lm
(4k) and so on up to 10110Gray ¼ 11011b that represents

9lm ¼ 30k. Table 1 summarizes the variable collection

with their binary length and respective boundaries within

the search space of the algorithm.

These binary strings are concatenated in a single string

known as chromosome (49-bit long) and any given chro-

mosome represents a unique individual of the simulated

population, by decoding it (retrieving the value of the

variables back) and evaluating the objective functions with

its numerical values we obtain the fitness for the particular

individuals. By the ways, there might be binary string

which numerical attribute is out of the boundaries of a

given variable, these individuals must be treated as non-

feasible solutions to the problem and filtered out of the

population by means of restriction compliance mecha-

nisms, preventing the population to evolve into that

direction.

5 Bio-inspired metaheuristic algorithm

We define the search space of our algorithm as all the

possible points within the boundaries of our restrictions.

Restrictions are set regarding compliance with design rules,

limitations in the fabrication process or any other facts

known to be impractical. After several evaluations of the

Fig. 12 Topological variables in the FGMOS and the MEMS multi-

layer capacitive structure

Table 1 Range and codification of variables

Var Range Min Max Bits

W 10� 30k 3 lm 9 lm 5

L 2� 10k 0:6 lm 3 lm 4

WFG 10� 30k 3 lm 9 lm 5

LFG 10� 30k 3 lm 9 lm 5

WCG 5� 25k 1:5 lm 7:5 lm 5

LCG 5� 25k 1:5 lm 7:5 lm 5

n 5� 25 5 fingers 25 fingers 5

WF 5� 20k 1:5 lm 6 lm 4

LF 5� 30k 1:5 lm 9 lm 5

dtip 3� 10k 0:9 lm 3 lm 3

dfin 3� 10k 0:9 lm 3 lm 3

Total chromosome length 49

Microsystem Technologies (2021) 27:2889–2901 2895
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objective functions (12) and (13) with randomly generated

values for the 11-variable chromosome string yet observing

the correspondent restrictions such as keep the control gate

smaller than the floating gate, we reveal an approach to the

shape of the search space in Fig. 13. This data set is treated

with a preliminary scaling factor in order to get rid of many

decimals as both Design Area and Sensitivity are quite

small values.

As described before, we cannot achieve optimal values

for two or more objective function in conflict at the same

time, the main goal of this implementation is to achieve the

Pareto Optimality (Censor 1977) which is related to the

best tradeoff between conflicting premises. When using

this kind of strategy it is convenient to minimize both

objective functions, therefore, for those where we actually

want to get greater values, i.e. sensitivity, we invert the

objective function and look for the minimum. So, as for

figures 3 and 13 we will find our viable solutions in the left-

bottom end.

Figure 14 summarize the data flow and key features of

the implemented algorithm. Most of the blocks are com-

mon to many bio-inspired meta-heuristics especially those

based on genetics and evolution of populations. This

algorithms uses the so called secondary population which

is a repository file used to store and update the non-dom-

inated solutions of each generation, after further non-

dominated selections on the secondary population we

obtain the effective Pareto Frontier.

There are three main processes all along the algorithm,

some of them occur in more than one situation or context:

5.1 Creation of individuals

As depicted in Fig. 15, all new individuals in the popula-

tion come from one of two sources and to be included is

because it has already cleared a restriction check (so it

belongs to the feasible region). The first source of indi-

viduals is used only for the initial population (in the first

generation) and consist in randomly generate binary bits

with a uniform probability. For the second generation and

on, new individuals are created out of a set successful (non-

dominated) individuals from the previous generation byFig. 13 Approach to the search space

Fig. 14 Flow chart of the genetic algorithm used

Fig. 15 Creation of new individuals
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means of the selection and crossover of parents and the

mutation (binary toggle) of one of bits of the generated

offspring. Both crossover and mutation processes control

the diversity among individuals and are tuned by proba-

bility of occurrence parameters with quite high (75%) a

very low values (1%), respectively, in this study case.

5.2 Decoding and evaluation

Decoding and evaluation of an individual is needed to

know its particular values of fitness for each objective

function and therefore its position in the search. Figure 16

illustrates how by decoding predefined segments of the

binary string we obtain an array of real-number parameters

related to every physical parameter included in the mod-

eling of the problem. Next, we evaluate the objective

functions with the numerical values of each variable and

the resulting fitness values can be represented as the

coordinates of the individual in the search space.

5.3 Non-dominated sorting

The non-dominated sorting is a one-on-one comparison

between all the elements of a uniform data set, in this case,

all the individuals of a given population.

As in Fig. 17a, when looking for minimum values in

each attribute our optimal solutions will be located in the

left-bottom end, a given solution sol 1 dominates its whole

right-upper quadrant by being better or equal than all those

other solutions in both attributes, so does sol 2 with its

respective right-top vicinity. The Pareto Frontier is the set

of solution in the nearest region of the idealistic optimal

characterized for consist in points that do not belong to the

dominance region of any other solution, this is why they

are called non-dominated, however, one or more of these

non-dominated solutions are the closest to the idealistic

optimal and determining its Euclidean distance is often a criteria to choose a final solution. The idealistic optimal is a

coordinated point calculated with the overall minimum

values reached in the data set even when the associated

individuals are far from it.

The graph presented in Fig. 17b is one of many obtained

while looking for a better solution to this design opti-

mization problem, it represents the Pareto Frontier calcu-

lated after ten executions (program runs) of the main

algorithm with a population of 1000 individuals evolving

during 100 generations. Due to the stochastic nature of the

general process it is convenient to merge the information of

many executions and perform a new sorting to get a better

approach to the real Pareto Frontier. Figure 17b also shows

the selected individual which is the one with the shortest

distance to the idealistic optimal. For this measurement a

second scaling is performed, a normalization within the

minimum and maximum for both objectives so all fitnessFig. 16 Decoding and evaluation of individuals

Fig. 17 a Set of non-dominated solutions, b the closest solution in the

Pareto Frontier to the idealistic optimal for a given execution
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values are mapped into a 0 to 1 range. In order to retrieve

the selected solution back and decode its chromosome, all

individuals must be labeled with their original position in

the population array and execution number and keep this

data intact during the non-dominated sorting processes.

6 Results and further simulation

This work consists of a series of tests of the algorithm, in

order to support the one result ultimately analyzed six sets

of tests were considered with results summarized as fol-

lows in Table 2.

The highlighted data corresponds to a set of only five

executions that excels all other by reaching a way more

dense and close Pareto Frontier, even when the sensitivity

calculation is slightly lower, the design area saving is

significant in relation to other results. In Fig. 18 all the

five execution are plotted together in terms of the amount

of non-dominated solutions found in every generation, the

average of solution stored for this set is about 119 per

run, for a total in the set F of 594 solutions, after the last

non-dominated sorting process, only 160 solutions

remained in the Pareto Frontier, Fig. 19 reports the con-

tribution of each execution, as can be seen, approximately

70 of the frontier point were calculated in run #2 while

the entire curve generated from run #3 was outperformed

by the rest.

The selected solution in the previous step is processed to

decode and reinterpret its associated binary string, for this

particular case, the solution #41 of the fourth run was the

one with the best performance, this individual correspond

with the parameter list shown below in Table 3.

Finally in the semi-automated design process we obtain

a plot (Fig. 20) for the definitive Pareto frontier, in this

normalized scale the sensitivity is about the 75% of the

maximum feasible and the design area drops to near the

10% of the largest calculated, it is up to the design engineer

to decide if the tradeoff is good enough for any particular

purposes.

The selected solution in the previous step is processed to

decode and reinterpret its associated binary string, for this

particular case, the solution #41 of the fourth run was the

one with the best performance, this individual correspond

with the parameter list shown below in Table 3.

Further electromechanical and electrical simulation can

be done in order to validate the expected performance. By

means of FEA software we get an estimate of the capaci-

tive properties behavior of the design proposal. Figure 21

shows the 3D model of the MEMS capacitive structure

along with its stationary analysis for capacitance.

Table 2 Summary of test results
Set Total execs Pop size ND sols found

A 10 1000 100 83 Sacc ¼ �101:55

DA ¼ 328:32

B 10 2000 100 69 Sacc ¼ �102:144

DA ¼ 380:16

C 10 1000 200 71 Sacc ¼ �101:414

DA ¼ 313:740

D 20 1000 100 79 Sacc ¼ �101:018

DA ¼ 328:640

E 10 3000 100 87 Sacc ¼ �101:872

DA ¼ 355:230

F 5 1000 50 160 Sacc ¼ �98:164

DA ¼ 121:416

Fig. 18 Evolution of the number of non-dominated solutions
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As for Eqs. (8) and (10) with this set of parameters the

capacitance in the MEMS structure at zero displacement

(and therefore 0G acceleration) is CY ¼ 1:099fF, what

produces a floating-gate potential of VFG ¼ 1:43V and a

static value for drain current of ID ¼ 584:21lA. Figure 22

shows the correlation between the variable capacitance and

the floating gate potential, as well as Fig. 23 depicts the

result of SPICE simulations based on the BSIM Level 1

that is in agreement with the Shichman-Hodges model

(Razavi 2002, p. 592), in simulation a potential is applied

to the gate terminal in an NMOS transistor for both a full-

range DC sweep and a transient analysis in the time

domain, in the later, the voltage at the transistor gate is

applied according to what the floating potential should be

when an full-displacement-range oscillatory acceleration

changes the varactor capacitance.

7 Conclusions

This particular algorithm is proven to be an effective tool

intended to assist the design engineer at the first stages of

an ASIC project, it allows to add partial yet comprehensive

automation and computational decision-making elements

Fig. 19 Contribution of each execution to the Pareto Frontier

according to the number of non-dominated solutions

Table 3 Topology of the final solution

Parameter Value Units

Channel width 9.0 lm

Channel length 0.6 lm

Floating gate width 3.6 lm

Floating gate length 5.4 lm

Control gate width 2.7 lm

Control gate length 4.5 lm

Number of fingers 5 lm

Finger width 1.5 lm

Finger length 6.9 lm

Tip gap 0.9 lm

Finger gap 0.9 lm

Fig. 20 Pareto Frontier

Fig. 21 CAD model of the 3-layered interdigital capacitor

Fig. 22 Floating potential according to the MEMS structure

capacitance
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to the CMOS standard layout design process. The results

retrieved by the computational system can for sure be taken

as a start point for the parameter selection at a given

requirement having in mind the opportune addition of

minor adjustments and user preferences. As treated in this

work, the automation characteristics can be extended to

micro-electro-mechanical components where not only

electrical but also mechanical parameters are included.

By the other hand, the cost of increase the degree of

confidence in the algorithm and the relevance of its results

is to consider a bigger collection of variables and param-

eters for the mathematical modeling of the objective

functions. Nevertheless, even when having access to more

detailed, realistic and exact data, handle too many param-

eters is often impractical and may require of especial

attention at the moment of confect the appropriate models

and configure the bio–inspired mechanisms to be used. As

an example, even when we used the term search space for

the two-dimensional projection of possible solutions in the

objective-function space, in this study case the actual

search space is a 11-dimensional one where reside all the

feasible configuration of a 49–bit long representative vec-

tor. As simple as this engineering problem is in comparison

with state-of-the-art computational benchmarks we

strongly recommend to take into account the rapid rise in

the complexity of the implementation as the detail in the

modeling of the problem grows.

As true for most bio-inspired meta-heuristic algorithms,

the convenience of using this kind of techniques must be

pondered according to the number of variables and objec-

tive functions to handle. Meta-heuristics are often said to

be the last option when having access to a wide catalogue

of classical optimization tools many of them way simpler

to implement while saving computational resources.

This work presented valuable information and results to

extend the outreach of ongoing VLSI and CMOS-MEMS

projects, future work will be oriented to explore the opti-

mization of a number of mechanical component and

capabilities, go deeper into the electrical models and look

for suitable applications.
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