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Abstract: This work deals with the presentation of a spiking neural network as a means for efficiently
solving the reduction of dimensionality of data in a nonlinear manner. The underneath neural model,
which can be integrated as neuromorphic hardware, becomes suitable for intelligent processing in
edge computing within Internet of Things systems. In this sense, to achieve a meaningful performance
with a low complexity one-layer spiking neural network, the training phase uses the metaheuristic
Artificial Bee Colony algorithm with an objective function from the principals in the machine learning
science, namely, the modified Stochastic Neighbor Embedding algorithm. To demonstrate this
fact, complex benchmark data were used and the results were compared with those generated by
a reference network with continuous-sigmoid neurons. The goal of this work is to demonstrate
via numerical experiments another method for training spiking neural networks, where the used
optimizer comes from metaheuristics. Therefore, the key issue is defining the objective function,
which can relate optimally the information at both sides of the spiking neural network. Certainly,
machine learning techniques have advanced in defining efficient loss functions that can become
suitable objective function candidates in the metaheuristic training phase. The practicality of these
ideas is shown in this article. We use MSE values for evaluating the relative quality of the results and
also co-ranking matrices.

Keywords: dimensionality reduction; spiking neural network; ABC algorithm; IoT; t-SNE

1. Introduction

Present and following information systems demand reviewing intelligent processes for
their efficiency. A sample of this dynamic issue is drawn from [1], where three “influence-
domain” categories, i.e., information processing, information transmission, and learning
strategy, lead the analysis of existing deep learning architectures. On the other hand, from
the context of the neuromorphic system, the computational spiking hardware is recognized
as both energy-efficient and reliable, where mostly the spike-timing-dependent plasticity
rule (STDP rule) is used for setting the weighting values of the synaptic connections, i.e.,
the learning rule [2]. In these architectures, layers of spiking neurons are aimed to resemble
the temporal encoding of the information communication as it occurs in biological neural
systems. The STDP rule represents the central mechanism for modifying the conductance
value in biological synapses. Multilayer, recurrent, and hybrid spiking architectures
along with their training algorithms are reviewed in [3] and show that the classic back-
propagation method can be adapted for the spiking models, finding that it is not quite
efficient for dealing with spatiotemporal information flows. The same work concludes
that proposing new learning methods is still an open issue, observing as a goal their
performance improvement. Reports on neuromorphic hardware implementations include
similar arguments [4]. Taking the learning rule of the spiking neural systems as a pure
optimization problem, mature metaheuristic algorithms might contribute to establishing
efficient solutions for it. Based on this idea , king neurons to compute efficiently the

Electronics 2021, 10, 1679. https://doi.org/10.3390/electronics10141679 https://www.mdpi.com/journal/electronics



Electronics 2021, 10, 1679 2 of 21

nonlinear dimensionality reduction of complex data, visualizing their inner classes in 3D
spaces. The authors in [5] made a review over two decades on feedforward continuous
neural networks. These systems were optimized with metaheuristics and classified into
four categories, connection weight, architecture, node, and learning rule. On the other
hand, training spiking systems based on metaheuristics could be divided into two branches,
firing rate and spike-time delay. The works in [6–8] belong to the first category meanwhile
those cited in [9–11] to the second one. The cuckoo search algorithm in [6], which uses
a random walk strategy, achieves the spiking training phase on six complex databases.
The authors in [7] reported using the ABC algorithm to train a single spiking neuron,
which recognizes classes in 5 datasets and a circular object from an image. Their training
strategy was based on the number of correct classification cases in a supervised manner.
They concluded that the ABC algorithm improves the quality of the results compared with
earlier metaheuristic methods. The work in [8] trains with the ABC algorithm a one-layer
spiking neural network to reduce the dimension of complex datasets into 3D spaces in a
linear way. In improving the training of spiking systems, similar researchers are found
in [9,10] a decade apart. Both use evolutionary algorithms. The research contribution in [9]
comes from its parallel version and that in [10] due to its comparison among using three
evolutionary versions. The work in [11] deals with an advanced training technique, where
a grammatical evolution engine guided outmost the performance. A three-layer spiking
network architecture served as a demonstrating vehicle. At last, the work in [12] seems to
be a good metaheuristic paradigm that gets an optimal balance between exploration and
exploitation, which is reported as reducing overfitting. Although, their authors report low
performance in a particular classification problem. In the present article, we argue that the
loss function in the t-SNE machine learning method provides its information-representation
properties to the spiking neural network during training. It happens because this loss
function can act as the objective function in the ABC algorithm. Making a summary, the goal
of this article focuses on a three-fold purpose. Firstly, introducing the ABC algorithm as a
robust optimizer, because it can discard the appearing local minima in the used objective
function, which conversely becomes a burden in front of gradient-based optimization
methods. Secondly, taking advantage of the optimal information-representation that the
available loss functions have from machine learning methods. Thirdly, combining both
the ABC algorithm and a machine learning loss function to solve efficiently a nonlinear
dimensionality reduction problem. On the other hand, the technological capabilities
associated with the spiking neural network model used in the experiments of this work can
lead to hardware realizations. Finally, we review in brief the edge computing advantages
that might be associated with IoT systems and list the singular characteristics that our
spiking neural network introduces into a neuromorphic system.

2. Main Topics

Current IoT technology can get both intelligence with edge computing and energy
efficiency with neuromorphic hardware. These associations are conceived in this work
due to the introduction of a metaheuristic process that optimizes a spiking neural network,
making possible a type of this hardware. The following seven subsections deal with the
topics that indirectly argue in favor of this concept.

2.1. Dimensionality Reduction

One of the topics in machine learning research is related to reducing the dimensionality
of complex data, i.e., discovering the classes and the relevant information that represent
them. In the linear sense of reducing the dimensionality, the classic Principal Component
Analysis (PCA) method computes the eigenvectors and eigenvalues of the covariance
matrix of the data set, which denote the new or principal directions on which the classes
might be interpreted [13]. The neural architecture for approaching PCA is based on the
linear auto-encode [14], whose diagram is depicted in Figure 1. Its training phase can be
regarded in two parts, i.e., (1) there are two neuron layers namely, the bottleneck layer
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and the output layer, whose encoding and decoding weights reach optimal values in the
MSE sense, and according to an auto-association task; then, (2) the output layer can be
discarded, leaving the bottleneck layer and its encoding weights already able to approach
PCA of new data.
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Figure 1. Architecture of the Autoencoder.

This training process can be extended into deeper layers, but considering nonlinear
neurons and appropriate loss functions to continue discovering efficiently other relevant
features [15]. Based on this background and with the aim at reducing efficiently the dimen-
sionality of input data, we propose using only the Bottleneck layer with nonlinear spiking
neurons along with their encoding weights. This minimal spiking network architecture
would be trained with the ABC algorithm, becoming the subject of this work and leading
to propose a neuromorphic hardware realization. Likewise, we observe that this effort can
benefit intelligent IoT systems.

2.2. Internet of Things

The Internet of Things was defined in its origin as a subnetwork to allow instru-
ments, measuring and monitoring devices and mobile communications systems, collect
data derived from human being activities for their living support, such as health care,
environmental, smart city, commercial and industrial [16]. Technically, the goal in IoT
systems was conceived to provide an initial platform from where the information could be
sent to specific centers for their analysis, evaluation, and diagnosis; then, after conducting
a decision-making process a signal was sent elsewhere through the internet-road for the
action of control, security or other.

2.3. Edge Computing

At present, Internet of Things systems are becoming the first link among others
on the path between the source and the destination of internet connections and where
the edge computing scheme is introduced. This fact brings computing intelligence and
security capabilities into the data generation domain. Hence, IoT systems can benefit from
deep learning methods, which do efficient information reduction tasks with knowledge
discovery [17,18]; this has the impact of optimizing costs and safety of wide-area-networks,
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clouds and data centers. Likewise, the trend of edge computing with intelligence includes
creating frameworks and design standards to define smart IoT architectures. This type of
framework is found in [19].

2.4. Pre-Training Concept

The primary nonlinear autoencoder is able to reduce the dimensionality in complex
data, using its Bottleneck layer. The nonlinear autoencoder model was originally taken
as a basis to generate early deep autoencoder architectures, where a cross-entropy error
observed its optimization [15]. At present, a larger number of deep architectures are
counted for [20], which efficiently discover subclasses in complex data. However, the
strategy behind their success comes frequently from doing pre-training [21], leading to
finding essential features in images, video, audio, and speech data in tasks for identifica-
tion, classification, and reduction of memory. This concept is included in this paper for
completeness.

2.5. Edge Computing Advantages by Using Neuromorphic Systems

The design of IoT devices and systems includes relevant advantages when the edge
computing paradigm is delivered by Neuromorphic Systems (NS). We count the following.

1. Energy efficiency: NS are more suitable than general-purpose computing hardware.
The expected difference is several orders of magnitude.

2. Low latency: NS surpass at processing continuous streams of data, reducing the delay
to accomplish intelligent tasks.

3. Adaptive processing: NS can adapt to changes in context.
4. Rapid learning or adaptation: NS show capabilities beyond most standard artificial

intelligence systems.

Extending this context, the spiking neural network presented in this work gives a
basis for conceiving a neuromorphic processor prototype, whose advantages are below.

• The Artificial Bee Colony (ABC) algorithm is a gradient-free optimizer that conve-
niently replaces the STDP rule and backpropagation-based algorithms.

• The loss function in the t-distributed Stochastic Neighbor Embedding (t-SNE) method
can act as the objective function in the ABC algorithm.

• The training phase is guided by the objective function of the ABC algorithm.
• The trained spiking neural network achieves efficiently a nonlinear dimensionality

reduction, which is suitable for either task: reducing memory size or classifying
complex data.

2.6. Metaheuristic Optimization

Optimal solutions in many complex engineering problems can be drawn from using
metaheuristics methods, representing a practical alternative to gradient-based numerical
procedures. Notably, the ABC algorithm [22] belongs to this optimization category. Its
pseudocode is presented in Algorithm 1.
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Algorithm 1 ABC Pseudocode.

1: Data: set control parameter values;
2: SN: Number of Food Sources,
3: MCN: Maximum Counter Number,
4: limit : For deciding either a source is exhausted
5: Begin
6: Initialize and evaluate the food source locations
7: counter = 1
8: while counter < MCN do
9: Employed Bees’ labor (see Algorithm 2)

10: Onlooker Bees’ labor (see Algorithm 3)
11: Memorize the Best Solution
12: Scout Bees’ labor (see Algorithm 4)
13: counter ++
14: end while
15: End

In this pseudocode, the instructions named Employed Bees’ labor, Onlooker Bees’
labor, and Scout Bees’ labor follow the Algorithms 2–4, respectively, described in [23].
An employed bee randomly selects one food source xk from the current population and
chooses a random dimension index j. The new food source is obtained by:

vij = xij + φij

(
xij − xkj

)
, (1)

where i is the solution currently being exploited, k is a randomly chosen neighbor solution,
and φij is randomly chosen from [−1, 1] drawn from the uniform distribution. An employed
bee unloads the nectar and then gives information to onlookers about the quality and the
location of her source. High-quality solutions have a high chance to be selected but the
solutions with low quality can also be selected by the onlookers [23]. The probability of
each solution (pi) can be calculated proportionally to its fitness value:

pi =
f itnessi

∑SN
i=1 f itnessi

. (2)

Algorithm 2 Employed Bees’ Labor Pseudocode (Modified from [15]).

1: Data: food source population;
2: Begin
3: for f oodsources < xi do
4: new solution x′ ← produced by Equation(1)
5: f (x′)← evaluated new solution
6: if f (x′) < f (xi) then
7: xi ← x′

8: exploit(xi)← 0
9: else

10: exploit(xi)← exploit(xi) + 1
11: end if
12: end for
13: End
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Algorithm 3 Onlooker Bees’ Labor Pseudocode (Modified from [15]).

1: Data: food source population; Probability of each solution
2: Begin
3: for f ood sources xi do
4: pi ← assign probability by Equation(2)
5: end for
6: i← 0
7: t← 0
8: while t < SN do
9: r ← rand(0, 1)

10: if r < p(i) then
11: t← t + 1
12: x′ ← a new solution produce by Equation(1)
13: f (x′)← evaluate new solution
14: if f (x′) < f (xi) then
15: xi ← x′

16: exploit(xi)← 0
17: else
18: exploit(xi)← exploit(xi) + 1
19: end if
20: end if
21: i← (i + 1) mod (SN − 1)
22: end while
23: End

For a specific food source or solution X, if employed bees and onlooker bees cannot
find any new food source or new solutions in its neighborhood to replace it, the food
or solutions may be trapped into local minima. For this case, Scout Bees’ Labor must
be applied.

Algorithm 4 Scout Bees’ Labor Pseudocode (Modified from [15]).

1: Data: food source population; Exploitation Counters
2: Begin
3: si = i : exploit(i) = max(exploit)
4: if exploit(si) > limit then
5: xsi ← random solution by Equation(1)
6: exploit(si)← 0
7: end if
8: End

2.7. The T-Sne Machine Learning Method

The t-distributed Stochastic Neighbor Embedding (t-SNE) [24] method was proposed
as an alternative method for visualizing complex information in a reduced space or dimen-
sion, optimizing the quality of the clustering process to discover classes from data. It is
successful due to its avoiding the “crowding-problem”, by both introducing a symmetrized
cost function and using a t-distribution instead of a Gaussian one in the data. Although
these changes favored using a stochastic gradient for the original optimization process, the
resulting cost function also becomes suitable as the objective function for our experiments
with the ABC algorithm. The below equation defines the objective function in this work.
Its value is equal to the cross-entropy up to an additive constant.

C = KL(P||Q) = ∑
i

∑
j

pij log
pij

qij
, (3)
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in this equation, KL(P||Q) is the Kullback-Leibler divergence between the joint distribution
probability P in a high dimensionality space and the joint probability distribution Q in a low
dimensionality space. The quantities pij and qij are the pairwise similarities in the low and
high dimensionalities spaces, respectively. They are given with the Equations (4) and (5).

pij =
exp

(
−
∥∥xi − xj

∥∥2/2σ2
)

∑k 6=l exp
(
−‖xk − xl‖2/2σ2

) , (4)

qij =
exp

(
−
∥∥yi − yj

∥∥2
)

∑k 6=l exp
(
−‖yk − yl‖2

) . (5)

3. Topics Related to Preparing Experiments

The next four subsections include succinct but relevant information for realizing the
experiments, which generate the supporting results of the work.

3.1. Neuron Model Used in This Work

The spiking neuron model created by Izhikevich [25] takes advantage of other existing
ones, due to its low-complexity numerical formulation. In addition, it reproduces with
high accuracy the dynamic behavior of a biological neuron for a wide set of brain cortical
tissues. It is widely accepted for designing computational neuromorphic hardware. We
have used its dynamic differential equations, given below for producing another nonlinear
spiking behavior, i.e., a sigmoidal response.

Cv̇ = k(v− vr)(v− vt)− u + I i f v ≥ vpeak, then
u̇ = a{b(v− vr)− u} v← c, u← u + d

(6)

Table 1 summarizes variables and parameters of the Izhikevich model.

Table 1. Variables and parameters of the Izhikevich model.

Variables and Parameters Name

v membrane potential
u membrane recovery
vr resting membrane potential
vt cutoff or threshold potential
C membrane capacitance
I injected current

a, b, c, d, k dynamics type parameters

Table 2 lists the values of the parameters a, b, c, and d of some of the main Izhikeivh
neural model configurations, which are presented in a complementary publication by
Izhikevich [26].

Table 2. Typical values of principal configurations.

Neural Model Configurations (Acronym) a b c d

Regular Spiking (RS) 0.02 0.2 −65 8
Fast Spiking (FS) 0.1 0.2 −65 2

Low-Threshold Spiking (LTS) 0.02 0.25 −65 2
Chattering (CH) 0.02 0.2 −50 2

Intrinsically Bursting (IB) 0.02 0.2 −55 4
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In particular, we find new and optimal values of the parameters: a, b, c, d, and k, to get
a sigmoidal (or nonlinear) response in the rate of firing, which is achieved in a supervised
manner and minimizing an MSE quantity. Table 3, presents their values, which were found
with the ABC algorithm. The values of other variables are also included.

Table 3. Values of a, b, c, d and k for sigmoidal response.

Name Value

a −0.004811 ms−1

b 0.196783
c −85.592772 mV
d −5.343734 mV
k 0.9
C 100 pF
vr −60 mV
vt −40 mV

vpeak 35 mV

In Figure 2, we can see the sigmoidal response of the spiking neuron as a nonlinear type
configuration, where the parameters of Table 3 were used. The minimum and maximum
Firing Rate (FR) values of the sigmoidal spiking neuron are 4 and 109 spikes/s, respectively,
and, 4 and 104 for the reference continuous-sigmoid neuron. 70× 10−4 is the MSE value
between these two graphs. To calculate the MSE value, the two graphs have been previously
normalized dividing them by their respective maximum values of the firing rate.

60 70 80 90 100 110 120 130
Input current, pA

0

20

40

60

80

100

120

Sp
ik

e/
se
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nd

Sigmoidal Spiking Neuron
Continuous-sigmoidal Neuron

Figure 2. Response of spiking neuron in sigmoidal configuration (Nonlinear Response).

3.2. Spiking Neural Network Architecture Used in This Work

The architecture of the spiking neural network (SNN) for the experiments in this work
is shown in Figure 3. There are 3 sigmoidal spiking neurons, i.e., SSN1, SSN2 and SSN3,
which generate spikes at Firing Rates in spikes/s: FR1, FR2 and FR3, respectively. These
neurons receive the electrical currents I1, I2 and I3, which come from the set of transduced
voltages {ei,j} by the set of conductances {sj,k}.
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Figure 3. Spiking Neural Network Architecture.

3.3. Databases

In this work, three databases have been considered. The first one refers to the writing
of numbers [27]. This was created considering the positions of the pixels on a Tablet with
500× 500 pixels, and the pressure values exerted by 44 writers when writing the numbers
from 0 to 9. We have taken 1000 samples from this database and each sample is made up of
16 attributes.

The second database refers to a set of images of flowers, fruits and faces [28]. There
are 100 images for each type. They are gray-scale images with a dimension of 100 rows
by 100 columns. 67 characteristics have been extracted from each image, which corresponds
to the coefficients of the Local Binary Pattern (LBP) image processing technique, with a
processing block size of 64× 64.

The third database is a fused bi-temporal optical-radar data for cropland classifica-
tion [29]. There are 98 radar features and 76 optical features, that is, each sample is made
up of 174 features. Seven crop type classes exist for this data set as follows: 1—Corn;
2—Peas; 3—Canola; 4—Soybeans; 5—Oats; 6—Wheat; and 7—Broad-leaf.

Table 4 summarizes the parameters of the three database.

Table 4. Database Parameters.

Name Data Features Classes Dimension

Handwriting Numbers 1000 16 10 1000× 16
Fruits, Flowers, and Faces 300 67 3 300× 67

Croplands 700 174 7 700× 174

3.4. Training Phase Strategy

The SNN architecture depicted in Figure 3 has been arranged to play the encoding
process of an autoencoder and from it, 3 Dimensions are synthesized. This represents
a reduction in the dimensionality of the databases. This is equivalent to extracting the
first three main components from each database. To understand the training phase for
dimensionality reduction of the databases a flow diagram is presented in Figure 4.
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Figure 4. Training Process of the Spiking Neural Network.

The process starts by extracting from the input data a probability distribution function
(PDF) named P, and this will be the reference for the search process, of the parameters
corresponding to the synaptic conductances of three spiking neurons with the sigmoidal
response. The SNN receives the data as a voltage vector and responds with an output
matrix corresponding to the firing rate of each neuron.

The output matrix of the SNNs is considered as a possible dimensionality reduction
of the data and from this process, a probability distribution function of the t-student type
is obtained, named Q. The probability functions P and Q are compared to obtain their
measure of similarity by calculating the Kullback-Leibler (K-L) divergence.

The K-L divergence is used as an objective function to be minimized by the ABC
metaheuristic algorithm. The ABC algorithm is executed to determine the optimal values
of the synaptic conductances. This process is repeatedly applied until reaching a certain ε
value, as a criterion for optimality of this process.

4. Experimental Results

This section presents the results of the dimensionality reduction task by the proposed
spiking neural network. They come from three experiments, whose databases are named:
Handwriting Numbers, Images, and Croplands. It is also included a discussion subsection.

4.1. Relative Quality of Efficiency by Mse Evaluations

In principle, one spiking neural network can generate M output clusters from a set
of input training vectors with M classes. In addition, each cluster will be visualized in
a 3D space, whose 3 axes will be named Dimension 1, Dimension 2, and Dimension 3. The
quality of this spiking neural network in performing the dimensionality reduction task
over one class of M is evaluated with the MSE operator according to Equation (7).

MSE =
1
N
×∑(D1,i − D2,i)

2, with i = 1, . . . , N, (7)
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The parameters in Equation (7) are explained in Table 5, where there can be two
landmark experiments, i.e., by (1) a reference neural network and by (2) a random numbers
generator with uniform distribution. Case (1) refers to a classic neural network with
continuous-sigmoid neurons, replacing the spiking neurons. In case (2), the distances
come from a random function contained in a standard numerical platform.

Table 5. Meaning of parameters.

Parameters

N, number of samples in one class.
{D1,i}, set of distances between the center of the cluster and all N samples;

by a landmark experiment, in the same class.
{D2,i}, set of distances between the center of the cluster and all N samples;

by the spiking network, in the same class.

From the above, we should realize two MSE quantifications for evaluating the quality
of the spiking neural network.

• MSE-1: Spiking versus Reference. Measures the deviation of the spiking network
versus a reference neural network.

• MSE-2: Random versus Reference. Measures the deviation of the random distances
versus a reference neural network.

Comparing MSE-1 with MSE-2 is expected to get an MSE-1 lower than an MSE-2 to
prove that the spiking neural network is able to correlate with the reference neural network.
The adverse fact namely, MSE-1 equal to MSE-2, would show a lack of correlation.

4.2. Quality Measurement by the Co-Ranking Matrix

Given the dimensionality reduction, the evaluation of the new data mapping about
the data expressed in high dimensions remains to be completed. To determine this objective
measurement, it is proposed to use the co-ranking matrix, introduced in [30] and defined as

Qkl =
∣∣{(i, j) | ρij = k and rij = l

}∣∣, (8)

where ρij represents the rank of xi with respect to xj in the high-dimensional space of
the original database. For its part, rij is the rank of yi with respect to yj in the proposed
low-dimensional space, and |·| denotes the number of elements in the set. The ranks are
calculated using Equation (9), where δij represents the distance from xi to xj while dij goes
from yi to yj:

ρij =
∣∣{k | δik < δij or

(
δik = δij and k < j

)}∣∣
rij =

∣∣{k | dik < dij or
(
dik = dij and k < j

)}∣∣. (9)

When the values in the co-ranking matrix are set on the main diagonal, it is interpreted
that the mapping is perfect. Although this quotation is almost impossible to fulfill for
original data, the measurements themselves suffer from slight variations, causing alter-
ations interpreted as intrusions or extrusions. An intrusion is considered when a point j
has a lower rank with respect to the point i, in the representation of low-dimensional
data compared to high-dimensional data. Conversely, an extrusion occurs when a point j
has a higher rank with respect to point i in low-dimensional representation compared
to high-dimensional data.The intrusion points are located below the main diagonal; the
extrusion points above.

An improvement in the calculation of the co-ranking matrix is presented in [31]. The
quality of the representation of low-dimensional data is measured as a function of the
number of points that remain within a k-neighborhood during the projection process.To
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carry out this measurement, we will use Equation (10), where N represents the number of
total points and K ends the value of the neighborhood:

QNX(K) =
1

KN

K

∑
k=1

K

∑
l=1

Qkl . (10)

QNX(K) is sensible for a small number of samples, where the mapping error might
become large. In addition, over a particular value of K, the error saturates to a low value.
The relation QNX(K) versus the number of samples is a curve that follows a diagonal,
where it represents the ideal QNX(K). The expected quality comes from the numerical
QNX(K) graph, where it saturates. The saturation point is identified where the ranking
matrix starts to follow the main diagonal. We will evaluate the dimensionality reduction
task visually. We will compare saturations in both numerical and experimental curves.

4.3. Handwriting Numbers Experiment

To determine the performance of the spiking neural network in reducing dimension-
ality, its result has been compared with the response obtained with a reference neural
network built with continuous-sigmoid neurons. The three databases have been evaluated
with both architectures and the results are presented below.

Figure 5 shows the dimensionality reduction obtained with the two architectures
when the database corresponds to handwriting numbers. In Figure 5a, the distribution of
the 10 classes granted by the SNN is shown. In Figure 5b, the distribution of the classes with
reference neural network is shown. In Figure 5c, the distribution of the class corresponding
to digit zero is shown. In blue color, the SNN distribution is shown, and black color,
the reference continuous-sigmoid neural network distribution is shown. The process is
repeated similarly way for the rest of the classes and they are graphed in Figure 5d–l.

The response of each neuron, namely with spiking and continuous neurons, is con-
sidered as a dimension in the graphs of Figure 5. The values of the centers of the classes
for each dimension are presented in Figure 6. From these graphs, it is observed the high
similarity in the response of both networks.

As it was stated in Section 4.1, and for evaluating the quality of the dimensionality
reduction task in this experiment, i.e., Handwriting Numbers Experiment, we calculate the
quantities MSE-1 and MSE-2. They are presented in Figure 7.

As mentioned in Section 4.2, to evaluate the quality of the data representation in low
dimensions, the calculation of the co-ranking matrix has been obtained. Figure 8 contains
the graphs of the co-ranking matrix, which corresponds to the dimension reduction of the
database of handwritten numbers, for three techniques, numerical t-SNE, Spiking Neural
Network, and Reference Neural Network.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Class distribution for the Handwriting Numbers Database. In Figure 5a,b, each color represents a class. In
Figure 5c–l the blue color corresponds to the SNN distribution and the black color to the reference continuous-sigmoid
neural network distribution. (a) Distribution from SNN architecture. (b) Distribution from Autoencoder. (c) Number “zero”.
(d) Number “one”. (e) Number “two”. (f) Number “three”. (g) Number “four”. (h) Number “five”. (i) Number “six”.
(j) Number “seven”. (k) Number “eight”. (l) Number “nine”.
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Figure 6. Values of centers. (a) Value of Centers in Dimension 1. (b) Value of Centers in Dimension 2.
(c) Value of Centers in Dimension 3.
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Figure 7. MSE values. (a) MSE-1: Spiking versus Reference. (b) MSE-2: Random versus Reference.

0 100 200 300 400 500 600 700 800 900 1000

K

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
N

X
(K

)

Numerical t-SNE
Spiking Neural Network
Reference Neural Network

Figure 8. The graphs of the co-ranking matrix.
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4.4. Images Experiment

In this experiment, the database contains 3 classes of gray-scale images, i.e., Flowers,
Fruits, and Human Faces. As it has proceeded in Section 4.3, we also do the same to show
the dimensionality reduction result by both the SNN and the reference neural network in
Figure 9a,b. This figure also includes the classes separately, from Figure 9c–e.

(a) (b)

(c) (d) (e)

Figure 9. Class distribution for the Flowers, Fruits and Faces Database. In Figure 9a,b, each color
represents a class. In Figure 9c–e the blue color corresponds to the SNN distribution and the black
color to the reference continuous-sigmoid neural network distribution. (a) Distribution from SNN
architecture. (b) Distribution from autoencoder. (c) Flowers class. (d) Fruit class. (e) Faces class.

Figure 10 shows the dimensions of the centers of the classes of both networks namely,
the SNN and the reference neural network. We observe that both networks generate
similar distributions.
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Figure 10. Values of Centers. (a) Value of Centers in Dimension 1. (b) Value of Centers in Dimension 2.
(c) Value of Centers in Dimension 3.
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As it was stated in Section 4.3, and for evaluating the quality of the dimensionality
reduction task in this experiment, i.e., Images Experiment, we calculate the quantities
MSE-1 and MSE-2. They are presented in Figure 11.
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Figure 11. MSE values. (a) MSE-1: Spiking versus Reference. (b) MSE-2: Random versus Reference.

In order to evaluate the quality of the representation of the data in low dimensions,
the calculation of the co-ranking matrix has been obtained. Figure 12 contains the graphs of
the co-ranking matrix for the database comprised of images of Flowers, Fruits, and Faces.
Three techniques have been evaluated, numerical t-SNE, Spiking Neural Network, and
Reference Neural Network.
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Figure 12. The graphs of the co-ranking matrix.

4.5. Croplands Experiment

In this experiment, the database contains seven classes of complex data related to
croplands, i.e., corn, peas, canola, soybeans, oats, wheat, and broad-leaf. As has proceeded
in Section 4.3, we also do the same to show the dimensionality reduction result by both
the SNN and the reference neural network in Figure 13a,b, respectively. This figure also
includes the classes separately, from Figure 13c–i.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 13. Class distribution for the Cropland Database. In Figure 13a,b, each color represents a
class. In Figure 13c–i the blue color corresponds to the SNN distribution and the black color to the
reference continuous-sigmoid neural network distribution. (a) Distribution from SSN architecture.
(b) Distribution from Reference Continuous Neuron. (c) Corn class. (d) Peas class. (e) Canola class.
(f) Soybeans class. (g) Oats class. (h) Wheat class. (i) Broad-Leaf class.

The values of the centers of the classes for each dimension are presented in Figure 14.
We observe that both networks generate similar distributions.
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Figure 14. Values of Centers. (a) Value of Centers in Dimension 1. (b) Value of Centers in Dimension 2.
(c) Value of Centers in Dimension 3.
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As it was stated in Section 4.1, and for evaluating the quality of the dimensionality
reduction task in this experiment, i.e., Croplands Experiment, we calculate the quantities
MSE-1 and MSE-2. They are presented in Figure 15.
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Figure 15. MSE values. (a) MSE-1: Spiking versus Reference. (b) MSE-2: Random versus Reference.

In order to evaluate the quality of the representation of the data in low dimensions,
the calculation of the co-ranking matrix has been obtained. Figure 16 contains the graphs of
the co-ranking matrix for the database that referer to cropland. Three techniques have been
evaluated, numerical t-SNE, Spiking Neural Network, and Reference Neural Network.
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Figure 16. The graphs of the co-ranking matrix.

4.6. Discussion

In the machine learning community, a fair evaluation of any dimensionality reduction
method would require knowing the reconstruction error that uses some available inverse
mapping process. In our case, this is not possible for the moment. Alternatively, we
consider three standard techniques for the evaluation, using a visual data method and
two quality functions, MSE and co-ranking matrices. The four points below argue these
evaluations on the results:

1. The visual data method can be applied in Figures 5, 9, and 13. The deduction drawn
is that all they are coherent.

2. The numerical evaluation of the centers of the classes, i.e., Dimension 1, Dimension 2,
and Dimension 3 in Figures 6, 10, and 14, by both the reference and spiking networks
follow the same trend pattern. This proves that the spiking networks reproduce a
performance near to the reference network.
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3. The MSE-1 and MSE-2 values are reported graphically in Figures 7, 11, and 15 and,
whose comparisons follow the premises, P1 and P2. Their statements are below.

P1. MSE-1 can compare the results provided by the experimental spiking
network with the set of the expected results produced by a continuous sigmoid
neuron network. MSE-1 should be relatively small.
P2. MSE-2 can compare the results provided by a no correlated network with
the set of the expected results produced by a continuous sigmoid neuron
network. MSE-2 should be relatively large.

Comparing MSE-1 with MSE-2 leads to find that MSE-1 is always lower than MSE-2.
This point proves that the efficiencies by all the SNNs are acceptable.

4. The graphical results in Figures 8, 12, and 16 show co-ranking matrices for all the
experiments. The pairs Spiking/Reference Network have nearly the same trace. In
addition, the third trace due to the numeric t-SNE was presented as the theoretical case,
whose saturation is the same as the spiking and reference networks. The evaluation
at this point demonstrates that the quality of the spiking networks are satisfactory.

The above 4 points show that the spiking neural networks in this article have a suitable
performance in the nonlinear dimensionality reduction task.

The works [6–12] cited in the Introduction section about training spiking systems
through using metaheuristics focus on either improving the backpropagation type algo-
rithm or demonstrating the performance of evolutionary algorithms do not get concerned
with using another objective function from artificial intelligence theory, but the funda-
mental MSE estimator. For completeness, we mention alternative and recent strategies
to create spiking systems that include transforming continuous deep neural systems into
spiking systems [32], using particular training formulations which compare superb with
the SpikeProp algorithm but associated with particular loss function [33], retaking the
biological STDP rule for convolutional deep networks [34], tuning convolutional-type
networks with a biologically plausible algorithm [35], to name a few.

An extension of this experimental work would include more databases in number and
attributes to categorize the efficiency of the intelligent capability of our spiking networks.

5. Conclusions

The spiking neural network paradigm is becoming suitable for implementing in
hardware intelligent tasks. Therefore, these systems would have advantages derived from
neuromorphic schemes. However, the training method for establishing efficiently the
weighting values of the synaptic connection between neurons is still an open issue. In this
work, we have presented meaningful results proving that the ABC algorithm is capable to
solve this complex task. The reason for the efficiency in this metaheuristic algorithm is due
to its capability to leave local minima, which certainly leads to find optimal solutions.

The problem conducted in this paper is related to reduce the nonlinear dimensionality
of complex databases, which was realized with the proposed spiking neural network using
available or generated attributes of the data. The nonlinearity transformation from high to
low dimensions was implemented with sigmoidal spiking neurons, which were created
also with the ABC algorithm. The loss function defined in the t-SNE method served as the
objective function in the ABC algorithm, keeping its original properties on the user data
during the training phase of the spiking neural network.

The intelligent process performed with the trained spiking neural network in this
work is still partial. It needs a further spiking softmax network for evaluating numerically
the actual classes.
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