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Abstract
This paper introduces a proposal for a wireless network of smart sensors designed to capture the
vibrations produced by the impact of a person’s footsteps on a dispersive and damped floor.
These vibrations are utilized to pinpoint the location of impacts using a heuristic algorithm,
enabling operation at a low data transmission/reception rate. Traditionally, the placement of
sensors within a room has not been given significant consideration in the context of localization;
however, our findings indicate that a detailed analysis of both the number and location of
sensors can substantially enhance the accuracy of footstep localization. In this study, we have
optimized the arrangement and quantity of sensors through the application of bio-inspired
metaheuristics, aiming to minimize localization errors across the room. Upon evaluating various
bio-inspired metaheuristic optimization algorithms, we identified the one that yielded the lowest
estimation errors for the room as a whole. Our experimental tests demonstrate that such
optimization significantly enhances the efficacy of the localization algorithm, resulting in a
reduction of localization error ranging from 18.24% to 46.78% across different trajectories.

Keywords: bio-inspired metaheuristics, footstep localization, occupant tracking, optimization,
sensor network

1. Introduction

Tracking a person inside a building has multiple applications.
For example, by following a person’s path, an intruder can
be tracked. In an emergency rescue/evacuation scenario, first
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responders can locate occupants in distress. In smart homes,
if the location of a person is known, energy consumption of
lamps, air conditioning, etc, can be reduced [1]. In the health
area, monitoring a person’s daily walking activity can be used
to estimate the energy expenditure during the day and thus pre-
vent, delay, or control some chronic diseases (diabetes, cardi-
ovascular and respiratory diseases, obesity) [2].

To locate and track the trajectory followed by a person
(also called a source or objective), a network of sensors
(also called nodes) can be used. These sensors can meas-
ure some excitation of the medium produced by the object-
ive. Traditional methods for locating objectives include those
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based on the time of arrival of the signal (TOA), time
differences of arrival (TDOA), angle of arrival (AOA), and
received signal strength (RSS) [3]. These localization meth-
ods were designed mainly for radio frequency (RF) or Wi-Fi
systems, where the signals to be studied propagate through the
air and the propagation speed is considered as a constant.

As it was already reported, it is possible to locate a person
inside a building by measuring the vibrations produced by the
person’s footsteps while walking. These vibrations are usually
measured using accelerometers placed at specific locations on
the floor of the room [1, 4–8].

Regarding this approach, it is important to remark that this
is a non-invasive technique, i.e. the person does not wear the
sensors nor is their activity recorded with cameras or micro-
phones. This respects their privacy and prevents the person
under study from modifying their behavior when they know
they are being observed, masking, in consequence, the ana-
lysis and leading to unreal results.

Concrete is a dispersive and damped medium, i.e. mech-
anical vibrations are distorted as they travel through the
floor, and then the propagation velocity is not a constant [7].
Therefore, the traditional methods (TOA, TDOA, AOA, RSS)
are not good options to be used in this medium [1]. For this
reason, new algorithms have been proposed based on tradi-
tional algorithms that overcome the disadvantage of working
in dispersive and damped mediums such as concrete.

With this in mind, indoor footstep localization algorithms
consider different levels of complexity and infrastructure
requirements. For instance, some of these methods need to
store and process several samples of the signal. Alajlouni, et al
[4], Alajlouni and Tarazaga [5], andAlajlouni and Tarazaga [6]
used RSS-based methods, so it was necessary to calculate the
average power of the accelerometer signal within a given time
window. Poston et al [1] stored the acceleration signal and
studied the vibrations within a time window; then localization
was done using a method based on TDOA. Li et al [8] stored
and processed the complete signals coming from triaxial accel-
erometers, then applied a hybrid localization method combin-
ing the TDOA and AOA methods.

These methods reported sub-metric errors in footstep loc-
alization; however, the heuristic SO-TDOA (sign of the time
differences of arrival) algorithm proposed in Bahroun et al [7],
can deliver sub-metric errors without storing all the footstep
information, since it only requires knowing the TOAof the sig-
nal. This TOA can be estimated by a threshold method (when
the signal amplitude crosses a specific value).

As a sample of the complexity of these kinds of systems,
localization algorithms are usually tested in rooms with highly
instrumented floors such as Goodwin Hall [9]. This is a build-
ing designed for a variety of applications, including structural
health monitoring, building dynamics, and human motion.
This building is equipped with high-sensitivity piezoelectric
sensors installed under the floor and attached to the structural
supports of the building.

When such highly equipped facilities are not available,
sensors are usually placed in locations such that they are uni-
formly distributed throughout the room. For example, if four

sensors are used, one sensor is usually placed in each corner
of the room. However, we will show that if a study of the loc-
ation of the sensors within the room is performed, the localiz-
ation of the footsteps can be improved. The complexity of the
study will depend on the localization algorithm used. In this
study, we use the SO-TDOA algorithm, since it only requires
the value of the times of arrival, thereby simplifying the system
and reducing data storage requirements.

Regarding the behavior of the mechanical wave produced
by a footstep, it is worthy tomention the properties of the range
of frequencies present in the traveling wave along a floor. For
instance, lower frequencies contribute most of the energy of
the wave-packet and are the most affected by dispersion, as
well.

On the other hand, frequency-dependent damping is present
mainly at higher frequencies. A complete theoretical analysis
about dispersion and damping is presented by [4, 7] consid-
ering classical plate theory. Therefore, dispersion and damp-
ing will be present in every floor considered, and particular
experimental tests should be carried out for each kind of floor.
Experimental results using an accelerometer as a sensor are
reported for concrete, concrete covered by carpet, and concrete
partly dusted with sand in [10]. Finally, it should be mentioned
that concrete was selected for the present study since it is the
most used material for construction in Mexico, and because it
is the intention to adapt the system proposed in a regular living
environment.

From the aforementioned device and material characterist-
ics, a clear division of tasks can be identified for the proposal
reported here. First, considering the dispersive and damping
characteristics of the material used as the test floor, it is imper-
ative and highly important to measure how the footstep sig-
nal arrives to sensors located at different positions used in
the designed system, while accounting for the requirements of
the SO-TDOA algorithm. Once tests and characterization con-
ducted under different conditions deliver reliable and reprodu-
cible results, implementation of the measurement system can
proceed. Second, and equally important, is ensuring a clean
and high quality of the footstep signal. This was achieved
after conducting a thorough characterization of the capacitive
accelerometers, following the programming options outlined
in datasheet [11], which can provide better operating condi-
tions for our goal. Thus, the selection of a reliable and low-
cost accelerometer should yield high-quality, clear, and easily
measurable footstep signals when integratedwith the proposed
system.

With this in mind, this paper contributes to the field of
measurements by proposing a novel wireless network of smart
sensors to capture the vibrations produced by the impact of a
person’s footsteps on a concrete floor. In this work, a smart
sensor is defined as a device that measures floor vibrations,
performs threshold crossing detection, and is part of a sensor
network.

In contrast to literature [1, 4–8], our network is designed
to allow nodes to transmit a single datum per footstep, facilit-
ating low data transmission/reception rates. Additionally, the
network conducts threshold crossing detection directly at the
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nodes, so it is not necessary to perform this calculation in the
computer, thereby simplifying the system. Furthermore, it is
engineered to determine the TOA of signals without needing
to store comprehensive data on each footstep.

In addition, in [1, 4–8] the precise location of sensors was
not a primary focus. Therefore, in this study, both the num-
ber of sensors and their location in the room are optimized
using bio-inspiredmetaheuristics to minimize the footstep loc-
alization error, demonstrating that strategic application of the
SO-TDOA algorithm can substantially mitigate localization
errors.

1.1. Optimization

Optimization is the process in which the minimum or max-
imum of a function is determined. This function is known as
the objective function. All possible solutions to the optimiz-
ation problem are found within a bounded space called the
search space. A local minimum of a function refers to a point
where the value of the function is less than or equal to nearby
points within a certain neighborhood. On the other hand, a
global minimum is a point where the value of the function is
less than or equal to all other points in its domain.

Optimization methods can be divided into derivative and
non-derivative methods [12]. Derivative methods require
knowledge of the derivative of the objective function, while
non-derivativemethods require information (evaluation) of the
objective function and not of its derivative. Traditional optim-
ization methods are calculus-based methods or based on ran-
dom searches [13]. The main disadvantage of these methods
is that they are local optimizers, i.e. they can get trapped in a
local minimum of the objective function.

However, these methods can be employed as global optim-
izers by utilizing multi-start initialization techniques [14, 15].
In other words, multiple local searches are conducted from
different starting points, allowing for exhaustive exploration
of the search space, avoiding local optimality. The local min-
imum with the best objective function value is considered the
global optimum [14].

The search process in optimization algorithms ends
when some convergence criterion is met. These criteria are
employed to determine when an optimization algorithm has
achieved a satisfactory result or has sufficiently approached
the optimum. Some common convergence criteria in optimiz-
ation algorithms include terminating the algorithm when the
change in the function value between two consecutive itera-
tions is small, when the partial derivatives (gradient compon-
ents) of the function are small, when the change in the design
variables between two consecutive iterations is small, or when
a certain number of iterations is reached. The choice of conver-
gence criteria depends on the specific problem and the optim-
ization method used [12].

1.1.1. Modern optimization methods. Approximate
algorithms present an alternative methodology to conventional
optimization techniques. These algorithms can be divided into

heuristics and metaheuristics. ‘Meta’ comes from Greek and
means upper level, while ‘heuristic’ refers to the art of discov-
ering new strategies [13, 16].

Heuristic methods offer practical problem-solving tech-
niques that produce satisfactory solutions, although they may
not necessarily be optimal [17]. Metaheuristics are higher-
level heuristics that seek, generate, or select lower-level heur-
istics (partial search algorithms) capable of providing a suffi-
ciently good solution to an optimization problem [13].

Metaheuristic algorithms possess the capability to extens-
ively explore the search space, thereby enabling global optim-
ization without being confined to local minima. The ability to
overcome local minima in the objective function enhances the
likelihood of finding the global minimum and is referred to as
the robustness of the method [18].

While metaheuristics can provide a sufficiently good solu-
tion to an optimization problem, they may not necessarily be
the optimal [13, 18].

The different modern optimization methods include bio-
inspired population-based metaheuristic algorithms; these are
stochastic global optimizers inspired by nature. In these
algorithms, a function is optimized by evaluating individuals,
where each individual represents a potential solution [19].

These algorithms are iterative; they start with random solu-
tions, and with each iteration, the individuals move within the
search space trying to reach the minimum of the objective
function. Individuals share and store information of the search
space, help each other to avoid local minima, and use memory
to store the best solution obtained so far. The direction and
magnitude of the displacements of the individuals depend on
the algorithm used.

Since there are many problems (objective functions) with
different characteristics (conditions and constraints), there is
no single algorithm that universally optimizes better than the
others [20]. This is why a wide variety of bio-inspired meta-
heuristic algorithms have been developed.

Some of the most popular are particle swarm optimization
(PSO) [21], artificial bee colony (ABC) [22], grey wolf optim-
izer (GWO) [23] and combinations of them, to take advantage
of the strengths of eachmethod. For example, the Hybrid PSO-
GWO (HPSGWO) algorithm, proposed by Şenel et al [24],
takes advantage of GWO exploration (global search) and PSO
exploitation (local search) [25].

1.1.2. PSO. The PSO algorithm [21] is inspired by the
social behavior and movement dynamics of flocks of birds and
schools of fish. In this algorithm, each particle represents a
potential solution.

This algorithm finds the best global solution by adjusting
the displacement of each particle according to its personal best
position and the best global position of the particles of the
whole swarm. There are different variants of the original PSO
algorithm, with the objective of improving it [26, 27].

Each particle i has its own trajectory, i.e. it has a position
xi and a velocity vi, and moves in the search space updating
its trajectory according to the following equation:
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vi (t+ 1) = wvi (t)+ c1r1 [x
∗
i (t)− xi (t)]+ c2r2 [x

g (t)− xi (t)]

xi (t+ 1) = xi (t)+ vi (t+ 1) , i = 1, 2, . . . , M

where t is the current iteration; M is the number of particles
in the swarm; c1 and c2 are acceleration constants, which are
named cognitive and social parameter, respectively; r1 and r2
are uniform random numbers within [0, 1]; x∗i is the particle
best solution; xg is the global best solution; w= MaxIt−It

MaxIt is
called the inertia weight, which modifies the particle velocity
[26].

The algorithm keeps searching for solutions until a stopping
criterion is met, which can be a maximum number of itera-
tions, t=MaxIt.

1.1.3. ABC. The ABC algorithm [22] is inspired by the for-
aging behavior of bees. In the artificial colony, bees are divided
into two main classes: employed bees and unemployed bees,
with the latter further divided into onlooker bees and scout
bees.

In the ABC algorithm, food sources represent potential
solutions to the problem; the amount of nectar in a food
source corresponds to the quality of the solution (fitness).
All employed bees are associated with specific food sources
(solutions).

The algorithm consists of three phases: employed bees
phase, onlooker bees phase, and scout bees phase.

First, the employed bees are sent to random food sources xi
and the employed bees phase begins. In this phase, employed
bees search within their neighborhood for a new food source
with more nectar, conducting a local search and staying at
the source with the best fitness (a greedy selection is applied
between the two sources). Then, the employed bees share their
information with onlooker bees.

The onlooker bees phase begins when all employed bees
have shared their food source information. In this phase, the
onlookers select a food source i with a probability Pi given
by:

Pi =
fi∑M
j=1 fi

where fi is the fitness of the food source i and M is the total
number of food sources. This fitness is given by:

fi =

{
1/(1+ f(xi) , si f(xi)⩾ 0
1+ |f(xi)| , si f(xi)< 0

where f(xi) is the objective function evaluated at food source
location xi.

Once the food source has been selected, a local search is
performed as in the employed bees phase, i.e. the onlooker
bees search for another food source in their neighborhood and
stay at the source with the best fitness. If the nectar of the
food sources decreases or is exhausted (if a local minimum
was found) after a certain number of attempts (local search

abandoning limit), then the employed bees of those sources
become scout bees.

In the scout bee phase, scout bees randomly search for
a new food source xi and afterward, they again become
employed bees. Finally, the best food source (solution) found
so far is memorized.

These three phases are repeated until a stop criterion is met,
which can be a maximum number of iterations.

1.1.4. GWO. The GWO algorithm [23] is inspired by the
hunting behavior of gray wolf packs, where each wolf has a
role and hierarchy within the group. The alpha wolves (α) are
the leaders, the betas (β) are the second in hierarchical level,
followed by the deltas (δ) and finally the omegas (ω).

In the GWO algorithm, each wolf represents a potential
solution to the optimization problem, and the prey symbol-
izes the minimum (or maximum) to be found within the search
space. It is posited that there is only one alpha (α), one beta
(β), and one delta (δ), with all other potential solutions being
considered omega (ω) wolves.

The alpha, beta, and delta wolves are assumed to be the
closest to the prey, and thus, to determine the hierarchy among
the wolves, they are evaluated against the function to be optim-
ized. Accordingly, the alpha is the best solution, the beta is the
second-best solution, and the delta is the third-best solution.
The remaining solutions are considered omegas.

Then, the positions of the three solutions (xα, xβ , xδ) are
stored and the rest of the wolves (solutions xi) update theirs
position relative to the top three as follows:

xi (t+ 1) =
x1 + x2 + x3

3

where t is the current iteration,

x1 = xα −A1 ·Dα; x2 = xβ −A2 ·Dβ ; x3 = xδ −A3 ·Dδ

Dα = |C1 · xα − xi| ; Dβ = |C2 · xβ − xi| ; Dδ = |C3 · xδ − xi| .

Vectors A and C are coefficient vectors that determine the
movement of each omega wolf and are calculated as follows:

A= 2a · r1 − a; C= 2 · r2

where the components of a decrease linearly in each iteration
from 2 to 0. The vectors r1 and r2 are random vectors in the
range [0, 1].

This algorithm balances exploration and exploitation.
When the magnitude of vector |A|> 1 the wolf moves away
from the prey (exploration), but when |A|< 1, it approaches
the prey (exploitation). This dynamic helps the algorithm
avoid local minima, enabling global searches. However,
although |A| takes random values at each iteration, it tends to
decrease due to the vector a, which, decreases linearly with
each iteration. On the other hand, the vector C always takes
random values, favoring exploration, avoiding local minima
even in the last iterations.
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1.1.5. HPSGWO algorithm. The HPSGWO algorithm [24]
combines the PSO and GWO methods. This combination is
beneficial because when the PSO approaches a good solution,
the particles trend towards it, even if it is a local minimum,
meaning the PSO’s exploitation ability is high relative to its
exploration ability [24].

The HPSGWO algorithm introduces some GWO-enhanced
particles into the PSO to reduce the likelihood of the PSO
algorithm being trapped in a local minimum. Particle substi-
tution occurs with a low probability (prob), allowing the main
loop of the PSO to run while some particles enter a nested loop
of the GWO.

The nested loopsmean theHPSGWOalgorithm runs longer
than the original PSO and GWO, so the number of itera-
tions (MaxItW), probability (prob) and wolf population (Nw)
of the nested GWO loop are kept small. For example,Nw = 10,
MaxItW= 10, prob= 0.01 [24].

When new optimization algorithms are proposed, they are
typically compared with other algorithms to demonstrate their
effectiveness by optimizing specific functions. In this work,
we do not aim to develop a new optimization algorithm; how-
ever, a comparison of the previously mentioned bio-inspired
metaheuristics applied to the SO-TDOA algorithm is made to
select the one that best optimizes the location of the sensors
within a room.

2. Materials and methods

In order to propose a smart sensor network and to optimize
the positioning of the sensors inside the room, it is necessary
to define some concepts and give a brief review of the heuristic
SO-TDOA algorithm proposed in Bahroun et al [7].

The algorithm assumes that the order of arrival of the sig-
nals at different sensors is preserved (even in a dispersive and
damped medium such as concrete); that is, the signal arrives
first at the sensors closest to the source of vibration. This can
be expressed by equation (1),

sign(tsi− tsj) = sign(dsi− dsj) (1)

where sign(·) is the sign operator; (i, j) are a pair of sensors;
dsi is the distance between the position of the source (ps) and
the sensor i; tsi is the TOA from the source to the sensor i.

The TOA is defined as the time when the wave, produced
by a hit over the floor, arrives from the vibration source to the
sensor’s location and can be estimated by a threshold method
(see figure 1).

The algorithm is divided into two stages: The floor seg-
mentation stage and the measurement and localization stage.

2.1. Floor segmentation stage

First, the test surface is selected, and the sensors are placed
in known locations. Then, the test room is divided into Q
regions, where each region (Rk) is formed by the perpen-
dicular bisectors of the line segment joining each pair of
sensors (see figure 2(a)). Each region will have a characteristic

vector zk whose elements take values+1 or−1, as can be seen
in equation (2), where each element of the vector is given by
the sign of the differences of distance between a pair of sensors
(i, j) and a region Rk,

zk (l) = sign(dki− dkj) ; l=
(j − 2)(j − 1)

2
+ i (2)

∀ (i, j) ∈ {(1,2) ,(1, 3) ,(2,3) ,(1,4) , . . . ,(N− 1, N)}

where N is the number of sensors, dki is the distance between
region Rk and sensor i, dkj is the distance between region Rk

and sensor j.
Finally, the centroid pck of each region Rk is calculated (see

figure 2(b)). This segmentation stage is done only once, just
after the sensors are fixed on the floor.

2.2. Measurement and localization stage

Afterwards, a foot impact is made on the floor and the TOA
from the source to each sensor i is estimated (̂tsi). TOA is
estimated with a threshold method, starting from an arbitrary
time t0. After that, the characteristic vector of the source (zs) is
calculated, which is given by the sign of the measured TDOA.
The elements of zs take values +1 or −1.

zs (l) = sign
(̂
tsi− t̂sj

)
l=

(j − 2)(j − 1)
2

+ i . (3)

Following, the set of regions Mr that minimize the
Hamming distance to the measured characteristic vector zs is
calculated.

Mr = arg min
k∈[1...Q]

N(N−1)/2∑
i=1

(zs (a)⊕ zk (a)) (4)

Mr ⊂ [1 . . .Q]

where ⊕ is the exclusive or operator and the elements zs (a)
and zk (a) represent the ath elements of the vectors zs and zk,
respectively.

Finally, the source position p̂s is estimated by averaging the
centroids of the regions that minimize the Hamming distance
to the measured vector.

p̂s =
1

|Mr|
∑
r∈Mr

pcr (5)

where |Mr| are the cardinal numbers of the set Mr.
In the absence of measurement errors, the estimation of the

location of the footstep p̂s is given by the centroid of the region
pck whose characteristic vector zk minimizes the Hamming dis-
tance to the vector zs. For example, in figure 3(a), the footstep
ps is located within the region R1, so the estimated position
p̂s will be the centroid p

c
1 as shown in figure 3(b). That is, the

footstep localization error depends on the number and shape of
the regions, and then the estimation error is directly related to
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Figure 1. (a) The vibration propagates from the source located at ps to sensor i located at si. (b) The time of arrival is estimated using a
threshold method and measured with respect to an arbitrary time origin t0.

Figure 2. Room segmentation. (a) Room divided into regions Rk,
(b) Centroids of the regions pck. The dotted lines are the bisectors
that form the regions.

Figure 3. (a) A footstep ps in a room with 16 regions (b) The
estimated location of the footstep is at the centroid of the region
where the footstep occurred.

the number of sensors and their location. Finding the location
of the sensors that minimizes the localization error is a pro-
hibitive task if done manually, since changing the location of
a single sensor completely modifies all the regions. Therefore,
in this paper, the number of sensors and their location are com-
putationally optimized using bio-inspired metaheuristics.

2.3. Proposed smart sensor network

As seen, to perform the localization using the SO-TDOA
algorithm, it is only necessary to know the TOA from the
source to the sensors. This allows using smart sensors to detect
threshold crossing without the need to store and analyze all
the footstep information in a computer, which simplifies the
system.

In this work, we present a novel wireless smart sensor
network for footstep localization, where all nodes (smart
sensors) communicate bidirectionally with a central node
(Coordinator) using a point-to-multipoint topology, as illus-
trated in figure 4(a). Figure 4(b) shows a schematic of the
proposed network. The nodes consist of a capacitive accel-
erometer to measure vibrations and detect threshold cross-
ings, a microcontroller to configure and read the sensor, and a
wireless transmitter/receiver (TX/RX) module to communic-
ate with the coordinator. The coordinator consists of a TX/RX
wireless module and a computer where data processing is
performed.

Figure 5 depicts the flow diagrams for both the coordin-
ator and the nodes. The first task of the Coordinator is to cre-
ate the network. It then sends a flag to all nodes to instruct
them to start the TOAmeasurement. Once the flag is received,
the nodes begin measuring the TOA using a digital counter
and continuously check if the vibration amplitude crosses the
threshold. When a sensor detects that the signal crosses the
threshold, it sends the TOA to the coordinator (see figure 6).
This technique allows the nodes to send only one datum per
footstep, enabling the wirelessmodules to operate at a low data
transmission/reception rate.When the coordinator receives the
TOAs from all nodes, it sends them to a computer to store
them and subsequently estimate the location of the footstep
using the second stage of the SO-TDOA algorithm. Once this
is done, the flag is sent again to the nodes, and the cycle repeats
continuously. It is important to mention that this first pro-
posal of the system does not work in real time. The system
stores all the measurements in the computer, and when a stop-
ping criterion is met, then it estimates the trajectory followed
by the person. The stopping criterion can be a certain time
window of measurements or a certain number of footsteps.
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Figure 4. (a) Point-to-multipoint topology, where the central node communicates bidirectionally with the other nodes in the network. (b)
Block diagram of the proposed sensor network.

Figure 5. Flow diagrams of the sensor network. (a) Coordinator (b) Nodes.

In this work, we use the number of footsteps as a stopping
criterion.

The proposed network requires a sensor capable of detect-
ing small changes in acceleration caused by footsteps, an
adequate bandwidth to detect floor vibrations (the dominant
floor vibrations produced by a footstep are below 500 Hz [6]),
and a threshold crossing detection circuit as well as a circuit
to adjust the signal offset. EVAL-ADXL355-PMDZ [11] capa-
citive sensors were used together with an ATmega328P micro-
controller of which 21% of its resources are used (the code
uses 6492 bytes of 32 256 bytes available in the flash memory,

while the global variables use 440 bytes of 2048 bytes avail-
able in the SRAM). XBee 3.0 modules were used to form the
sensor network [28].

In contrast to the literature where the footstep signal is
sampled at 20 kHz [7] and transmitted complete for analysis,
in this work, we propose to send to the computer only one
datum per footstep. Assuming one footstep per second and five
nodes, then, only five data per footstep would be stored instead
of 100 000 data.

On the other hand, wireless modules consume 40 mAwhile
transmitting data [28]. If only one datum is transmitted instead

7
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Figure 6. TOA estimation. Sensor i starts measuring the time after receiving the flag from the coordinator. TOA is obtained when the signal
crosses the threshold.

of 20 000 data, then there will be a saving in power consump-
tion. However, a more in-depth study such as the one conduc-
ted in [29] is required to give an exact numerical value of the
power consumption savings in our system.

Regarding data processing, in the literature, the threshold
crossing detection is performed after transmitting the data. In
this work, the threshold crossing detection is performed dir-
ectly at the nodes with the help of the internal circuits of the
sensor, so it is not necessary to perform this calculation in the
computer, which simplifies the data processing.

2.4. Sensor network optimization

As previously mentioned, the number of sensors and their loc-
ation within the room can be obtained through optimization.
Hereafter, we define the objective function.

2.4.1. Objective function. If footsteps are distributed
throughout the room, it might seem intuitive that placing
sensors uniformly throughout the room (see figure 7(a)) would
yield the smallest average localization errors. However, chan-
ging the location of the sensors can lead to a larger number of
centroids (see figure 7(b)) and thus decrease the localization
error for the entire room.

Optimization is performed with footsteps uniformly dis-
tributed (see figure 7(c)). Hence, the optimization aims to find
the sensor locations that minimize the mean squared error
(MSE) of the location estimation of uniformly distributed
footsteps.

Then the objective function (the function to be optimized)
is given by the MSE, calculates as follows:

MSE =
1
Np

Np∑
m=1

(errorm)
2 (6)

where Np is the number of footsteps and errorm is the localiz-
ation error of the footstep m and is computed as

errorm = |psm− p̂sm|

errorm =

√
(psmx − p̂smx)

2 +
(
psmy − p̂smy

)2
(7)

where:
psm =

(
psmx

, psmy

)
is the actual location of the footstep m,

p̂sm =
(
p̂smx , p̂smy

)
is the estimated location of the footstep

m using the SO-TDOA algorithm.
As previously discussed, in the SO-TDOA algorithm, the

test room is divided into regions. The number and shape of
these regions depends on both the quantity and the placement
of the sensors. Consequently, the footstep localization error is
substantially affected by these parameters.

By substituting equations (2)–(5) and (7) into equation (6),
the objective function is obtained as follows:

MSE

=
1
Np

Np∑
m=1

∣∣∣∣∣∣∣∣psm−
1∣∣∣∣arg min

k∈[1...Q]

∑N(N−1)/2
i=1 (zsm (a)⊕ zk (a))

∣∣∣∣
×
∑
r∈Mrm

pcrm

∣∣∣∣∣
2

where Mrm is the set of regions r that minimize the Hamming
distance between the measured characteristic vector zsm and
the characteristic vector zk. ⊕ is the exclusive or operator,
zsm (a) represents the ath element of the vectors zs of the mth
footstep, and pcrm is the centroid of the region r that minimize
the Hamming distance.
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Figure 7. Centroids of the regions of a room for (a) uniformly distributed sensors, (b) non-uniformly distributed sensors. (c) Footsteps
uniformly distributed throughout the room.

Such that, the objective function depends on both the num-
ber of sensors N and their location si = (six, siy) due to the
characteristic vector zk (equation (2)), which can be rewritten
as follows:

zk (l) = sign

(√(
six− pckx

)2
+
(
siy− pcky

)2
−
√(

sjx− pckx
)2
+
(
sjy− pcky

)2 )
; l =

(j − 2)(j − 1)
2

+i.

If the vector S= [s1x s1y s2x s2y . . . sNx sNy] contains all the
coordinates si = (six, siy) of the sensors, where i = 1, 2, . . . ,N
and N is the number of sensors, then the goal is to search for
the vector S that minimizes theMSEwithin a 2N-dimensional
search space. The boundaries of the objective function are
given by the spatial limits of the room. Then, the optimization
problem can be stated as follows:

MinimizeMSE(S)s.t.MSE(S)six ∈ (0,Ux) ;siy ∈ (0, Uy)

where Ux, Uy are the maximum values for the horizontal and
vertical dimensions of the room, respectively.

2.4.2. Characteristics of the optimization problem. A room
measuring 2.5 m× 3.3mwas selected for the study. This room
featured an 11 cm thick concrete floor covered with ceramic
tile and was situated on the second floor of a residential house.

The boundaries of the objective function were set to
0.2m⩽ six ⩽ 2.3 m and 0.2 m ⩽ siy ⩽ 3.1 m as depicted
in figure 8(a). The footsteps for optimization were evenly dis-
tributed and spaced 0.25 m apart, as illustrated in figure 8(b).

To determine the optimal number of sensors, the MSE was
optimized using the HPSGWO algorithm for N = 3, 4… 10.
The population size was set to 50 individuals; the algorithm
was executed for 200 iterations and repeated ten times. The
parameters of the HPSGWO were c1 = c2 = 1.49445, w=
MaxIt−It
MaxIt [26], where It is the current iteration andMaxIt= 200

is total number of iterations.
Once the number of sensors was selected, their locations

were optimized using all the metaheuristics to identify the best

Figure 8. (a) Room and limits for optimization. (b) Footsteps
evenly distributed throughout the room.

one. For these optimizations, the population size was main-
tained at 50 individuals, and each algorithm was executed for
200 iterations and repeated 20 times. The parameters of the
PSO (also utilized in the HPSGWO) were c1 = c2 = 1.494
45, w= MaxIt−It

MaxIt and the local search abandoning limit for the
ABC algorithm was set to Limit = 10 [30].

The optimization algorithms were implemented in
MATLAB R2022a, on a PC with an Intel Core i7-7500 U
processor.

To implement the SO-TDOA algorithm effectively, it was
necessary to ensure the condition regarding the order of arrival
of the signals, as outlined in equation (1). In the absence of
TOA measurements (̂tsi) in the optimization, equation (1) can
be satisfied by assuming a constant propagation velocity, thus
t̂si = dsi/c where c= 1000 m/s is the propagation velocity in
concrete [7].

3. Results

3.1. Number of sensors optimization

Figure 9 illustrates the evolution of the average convergence
from the 10 runs of the HPSGWO algorithm for varying
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Figure 9. Average convergence of the HPSGWO for varying sensor numbers.

Figure 10. RMSE as a function of the number of sensors.

Table 1. Comparison of optimization algorithms.

Optimization algorithm MSE Min. (m2) MSE Max. (m2) SD (m2) Avg. time per run (min)

Non-optimized 0.091 0.091 0 —
Simplex 0.058 0.1094 0.0127 0.076
ABC 0.048 0.055 0.0017 5.322
GWO 0.048 0.059 0.0033 2.552
PSO 0.050 0.063 0.0028 2.901
HPSGWO 0.047 0.058 0.0027 5.545

numbers of sensors. It shows that as the number of sensors
increases, the MSE decreases. Additionally, figure 10 presents
the average root mean square error (RMSE) for different
numbers of sensors, fitting the exponential model RMSE =
1.082e−0.2896N.

The number of sensors can be chosen based on the desired
location accuracy for the entire room and the project’s budget
constraints. In this study, five sensors were selected, providing
a localization accuracy of approximately 25 cm for the entire
room.

3.2. Location of the sensors optimization

After selecting the number of sensors, their optimal locations
were determined using metaheuristics and simplex algorithms
to identify the most effective one. The simplex method [31]
is a traditional non-derivative optimization approach that

compares function values at the n +1 vertices of a simplex
(where n is the number of variables) and iteratively replaces
the worst vertex with a better point.

To increase the possibility to find a global solution, meta-
heuristics and simplex algorithms were executed for 200 iter-
ations and repeated 20 times, choosing random initial points
for each run.

Table 1 summarizes the minimum and maximum MSE,
standard deviation (SD), and average runtime for each
algorithm run. The HPSGWO algorithm achieved the low-
est MSE (0.047 m2) among all runs. Additionally, the meta-
heuristics found a better optimum than the simplex method
(0.058 m2). It was also noted that metaheuristics require more
time to find the optimum compared to traditional simplex
method, due to the frequent function evaluations in each iter-
ation. However, as this step is a one-time process, selecting
the method that optimizes the function most effectively is

10
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Figure 11. Average convergence of the different algorithms.

Figure 12. Sensors and centroids of the room regions (a)
non-optimized, (b) optimized.

advantageous, and all metaheuristics outperformed the sim-
plex method in this regard.

Moreover, figure 11 depicts the average convergence over
20 runs of both metaheuristic and Simplex algorithms, show-
ing that metaheuristic algorithms reduce the MSE by 28%
on average compared to the Simplex method. The GWO
algorithm reaches a lower average MSE (0.051 m2), but the
HPSGWO achieves convergence with fewer iterations.

Due to the inherent nature of metaheuristics, we cannot
guarantee that the global minimum was found. Nevertheless,
the solution obtained was deemed satisfactory since it led
to a significant reduction in RMSE for the entire room by
27.9% compared to the non-optimized locations shown in
figure 12(a) (non-optimized RMSE = 0.301 m; optimized
RMSE= 0.217m). Figure 12(b) displays the optimized sensor
locations, indicating that the new positions increase the num-
ber of centroids.

3.3. Measurements in the room

As previously discussed, the SO-TDOA algorithm involves
two stages: the floor segmentation stage and the measurement
and localization stage.

In this study, the first stage initiates when sensors are posi-
tioned on the room̀s floor. Their locations are recorded and
inputted into the computer to calculate the centroids of the

Figure 13. Photograph of the test room. Sensors are placed in the
non-optimized locations.

regions. This calculation is performed only once, assuming the
sensor locations remain unchanged.

The second stage of the SO-TDOA algorithm commences
upon receiving all TOA measurements. During this stage, the
locations of the footsteps are estimated utilizing the TOA data.
The algorithm was executed in MATLAB R2022a.

Consequently, sensors were positioned at non-optimized
locations (Snon_opt = [0.20 0.50 2.27 0.50 2.27 3.00 0.20 3.00
1.25 1.75] ) with their z-axis perpendicular to the floor plane
as shown in figure 13. An offset was applied to the sensors to
achieve a reading of +1 g (1 g = 9.81 m s−2) on the z-axis. A
threshold of±0.005 gwas set, meaning the TOA is determined
when the signal surpasses+1.005 g or drops below+0.995 g,
as depicted in figure 14.

Once the network was connected, ten impacts were
made on the floor with the sole at different locations in
the room, following the three trajectories illustrated in
figure 15. These tests were repeated for sensors placed
at locations optimized with the HPSGWO algorithm
(Sopt = [2.04 1.56 1.80 3.10 1.20 1.53 0.20 1.54 1.82 0.30]).

Figures 16(a)–(c) present the best estimation for the three
trajectories for the non-optimized locations, figures 16(d)–(f)
depict the best estimations for the optimized locations. Table 2
depicts the comparison of the RMSE for the estimations before
and after optimization highlighting that optimization reduced
the RMSE by between 18.24% and 46.78% for the three pro-
posed trajectories.

4. Discussion

Table 3 summarizes the characteristics and results of vari-
ous studies, including the current work. It highlights that
while almost all reported sub-meter accuracy in their find-
ings, the specific location of sensors was not a focus of their
research. In [1, 4–6] experiments were conducted in Goodwin
Hall [9], limiting any potential adjustments to sensor place-
ment. Conversely, in [7, 8], sensors were uniformly distributed
across the floor.

Table 4 underlines the significance of optimizing sensor
networks. It presents a comparison of localization errors
between a non-optimized six-sensor network and an optimized
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Figure 14. (a) Footstep signal and threshold. (b) The time of arrival is given when the signal crosses the threshold.

Figure 15. Displays the ten impacts made at each point along the proposed trajectories. (a) Trajectory 1. (b) Trajectory 2. (c) Trajectory 3.

Figure 16. Presents the best estimation for the three trajectories. (a)–(c) Non-optimized. (d)–(f) optimized. asterisks represent the actual
trajectories; squares denote the estimated trajectories, and triangles indicate locations where two estimations from two different footsteps
coincide.
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Table 2. RMSE comparison before and after optimization.

RMSE (m)

Sensor location Trajectory 1 Trajectory 2 Trajectory 3

Non-optimized 0.259 0.285 0.389
Optimized (HPSWGO) 0.211 0.233 0.207
Error reduction percentage 18.53% 18.24% 46.78%

Table 3. Summary of the characteristics and results from different studies.

Authors
Method
(Based on) Sensor

No. of
sensors

Location of
sensors

Room
dimensions

No. of
footsteps

RMSE
(m)

Poston et al [1] TDOA Piezo-electric
accelerometer

120 Non-Optimized a 25.5 m × 9.4 m 30 0.590

Alajlouni et al [4] RSS Piezo-electric
accelerometer

4 Non-Optimized a 3 m × 1 m 13 0.253b

Alajlouni and
Tarazaga [5]

RSS Piezo-electric
accelerometer

6 Non-Optimized a 13 m × 2 m 66 0.845

Alajlouni and
Tarazaga [6]

RSS Piezo-electric
accelerometer

11 Non-Optimized a 16 m × 2 m 162 1.020

Bahroun et al [7] SO-TDOA Piezo-electric/capacitive
accelerometers

9 Non-Optimized 3.6 m × 5.4 m 7 0.475

Li et al [8] ATDOA Seismometer 4 Non-Optimized 4 m × 3 m 12 0.270b

Present work SO-TDOA Capacitive accelerometer 5 Non-Optimized 2.5 m × 3.3 m 24 0.259
Present work SO-TDOA Capacitive accelerometer 5 Optimized 2.5 m × 3.3 m 24 0.211
a Performed at Goodwin Hall.
b Indicates mean error.

Table 4. Comparison of the RMSE between a non-optimized network utilizing 6 sensors and an optimized network with 5 sensors.

RMSE (m)

Trajectory 1 Trajectory 2 Trajectory 3

Six sensors non-optimized 0.2691 0.2867 0.3304
Five sensors optimized 0.211 0.233 0.207
Error reduction percentage 21.59% 18.73% 37.34%

Figure 17. Best estimation of the three trajectories for a non-optimized 6-sensor network. The asterisks represent the actual trajectories;
squares to denote the estimated trajectories, the triangles to indicate locations where estimations from two different footsteps coincide.

five-sensor network across the three proposed trajector-
ies (with figure 17 illustrating the estimated trajectories).
Remarkably, the optimized network achieves a reduction in
localization error ranging from 18.73% to 37.34% (equating
to between 5.3 cm and 12.3 cm) for the three trajectories, des-
pite having one fewer sensor.

This comparison demonstrates the impact of optimization
in lowering localization errors. Furthermore, by decreasing
the number of sensors, the overall system cost could also
be reduced. In this instance, optimization led to a reduction
in sensor count from 6 to 5, equating to a cost reduction
of 16.66%. Thus, it is advisable to thoroughly evaluate both
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the number and placement of sensors within a room before
deploying localization algorithms.

5. Conclusions

This study introduced a wireless network of smart sensors
designed to determine the TOA of signals without needing
to store comprehensive data on each footstep. Specifically,
the network is engineered to allow nodes to transmit a single
datum per footstep, facilitating low data transmission/recep-
tion rates. This efficiency is attributed to the utilization of the
SO-TDOA algorithm, which relies solely on the sign of the
TDOA for its operation.

A critical hurdle in the application of the SO-TDOA
algorithm within our network was the synchronization of
nodes, necessitating precise measurement initiation at the ref-
erence time t0. To address this, the system was devised to
prompt nodes to commence TOAmeasurement upon receiving
a signal from the coordinator, followed by a reset of counters
after each measurement.

Through the evaluation of various bio-inspired metaheur-
istic optimization algorithms, the hybrid HPSGWO method
emerged as superior, yielding the lowest estimation errors
across the entire room. The optimization of sensor placement
significantly reduced the RMSE for three distinct trajectories
by 18.24%–46.78%, demonstrating that strategic application
of the SO-TDOA algorithm can substantially mitigate localiz-
ation errors.

Furthermore, a comparative analysis between a non-
optimized 6-sensor network and an optimized five-sensor con-
figuration revealed that optimization could reduce localization
errors by 18.73%–37.34% across the three trajectories, despite
a reduction in the number of sensors.

Consequently, it is advisable to thoroughly assess both the
quantity and arrangement of sensors prior to the deployment
of any localization algorithm. Such preliminary considerations
can enhance the accuracy of trajectory tracking within a given
space and potentially lower the overall costs of the system.

6. Future work

The proposed system, while promising, has identified limit-
ations that are currently being addressed for improvement.
Notably, the system does not function in real-time; it stores
all measurements before estimating the individual’s trajectory.
Additionally, it lacks the capability to distinguish between the
footsteps of multiple people within the same space. Another
limitation is that the system’s testing was conducted in an
empty room. Hence, developing a real-time operational sys-
tem, enhancing the system to differentiate between multiple
individuals, and conducting experiments in environments with
obstacles represent significant avenues for future research.
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